Henley, S. A. & Dick, F. A. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div.7, 10 (2012). ArticleCASPubMedPubMed Central Google Scholar
Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev.8, 28–35 (1998). ArticleCASPubMed Google Scholar
Umen, J. G. & Goodenough, U. W. Control of cell division by a retinoblastoma protein homolog in Chlamydomonas. Genes Dev.15, 1652–1661 (2001). ArticleCASPubMedPubMed Central Google Scholar
Cross, F. R., Buchler, N. E. & Skotheim, J. M. Evolution of networks and sequences in eukaryotic cell cycle control. Phil. Trans. R. Soc. Lond. B366, 3532–3544 (2011). ArticleCAS Google Scholar
van den Heuvel, S. & Dyson, N. J. Conserved functions of the pRB and E2F families. Nature Rev. Mol. Cell Biol.9, 713–724 (2008). ArticleCAS Google Scholar
de Bruin, R. A. & Wittenberg, C. All eukaryotes: before turning off G1–S transcription, please check your DNA. Cell Cycle8, 214–217 (2009). ArticleCASPubMed Google Scholar
Bahler, J. Cell-cycle control of gene expression in budding and fission yeast. Annu. Rev. Genet.39, 69–94 (2005). ArticleCASPubMed Google Scholar
Fukuoka, M. et al. Identification of preferentially reactivated genes during early G1 phase using nascent mRNA as an index of transcriptional activity. Biochem. Biophys. Res. Commun.430, 1005–1010 (2013). ArticleCASPubMed Google Scholar
Wittenberg, C. & Reed, S. I. Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene24, 2746–2755 (2005). ArticleCASPubMed Google Scholar
Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell9, 3273–3297 (1998). ArticleCASPubMedPubMed Central Google Scholar
Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell13, 1977–2000 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bloom, J. & Cross, F. R. Multiple levels of cyclin specificity in cell-cycle control. Nature Rev. Mol. Cell Biol.8, 149–160 (2007). ArticleCAS Google Scholar
Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Nature Rev. Mol. Cell Biol.11, 208–219 (2010). ArticleCAS Google Scholar
Cimprich, K. A. & Cortez, D. ATR: an essential regulator of genome integrity. Nature Rev. Mol. Cell Biol.9, 616–627 (2008). ArticleCAS Google Scholar
Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nature Rev. Cancer6, 369–381 (2006). ArticleCAS Google Scholar
Chen, H. Z., Tsai, S. Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nature Rev. Cancer9, 785–797 (2009). ArticleCAS Google Scholar
Johnson, D. G. & Schneider-Broussard, R. Role of E2F in cell cycle control and cancer. Front Biosci.3, d447–d448 (1998). ArticleCASPubMed Google Scholar
Asano, M., Nevins, J. R. & Wharton, R. P. Ectopic E2F expression induces S phase and apoptosis in Drosophilai maginal discs. Genes Dev.10, 1422–1432 (1996). ArticleCASPubMed Google Scholar
Lukas, J., Petersen, B. O., Holm, K., Bartek, J. & Helin, K. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol. Cell. Biol.16, 1047–1057 (1996). ArticleCASPubMedPubMed Central Google Scholar
Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer1, 222–231 (2001). ArticleCAS Google Scholar
Chong, J. L. et al. E2f1–3 switch from activators in progenitor cells to repressors in differentiating cells. Nature462, 930–934 (2009). Establishes thein vivorelevance of E2F1, E2F2 and E2F3, indicating an important role for their repressor function in addition to their well-established function in transcriptional activation. ArticleCASPubMedPubMed Central Google Scholar
Weijts, B. G. et al. E2F7 and E2F8 promote angiogenesis through transcriptional activation of VEGFA in cooperation with HIF1. EMBO J.31, 3871–3884 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lee, B. K., Bhinge, A. A. & Iyer, V. R. Wide-ranging functions of E2F4 in transcriptional activation and repression revealed by genome-wide analysis. Nucleic Acids Res.39, 3558–3573 (2011). ArticleCASPubMedPubMed Central Google Scholar
Helin, K., Harlow, E. & Fattaey, A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol. Cell. Biol.13, 6501–6508 (1993). ArticleCASPubMedPubMed Central Google Scholar
Hatakeyama, M. & Weinberg, R. A. The role of RB in cell cycle control. Prog. Cell Cycle Res.1, 9–19 (1995). ArticleCASPubMed Google Scholar
Ginsberg, D. et al. E2F-4, a new member of the E2F transcription factor family, interacts with p107. Genes Dev.8, 2665–2679 (1994). ArticleCASPubMed Google Scholar
Grana, X., Garriga, J. & Mayol, X. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene17, 3365–3383 (1998). ArticlePubMed Google Scholar
Dimova, D. K. & Dyson, N. J. The E2F transcriptional network: old acquaintances with new faces. Oncogene24, 2810–2826 (2005). ArticleCASPubMed Google Scholar
Hitchens, M. R. & Robbins, P. D. The role of the transcription factor DP in apoptosis. Apoptosis8, 461–468 (2003). ArticleCASPubMed Google Scholar
Gaubatz, S. et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol. Cell6, 729–735 (2000). ArticleCASPubMed Google Scholar
Takahashi, Y., Rayman, J. B. & Dynlacht, B. D. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev.14, 804–816 (2000). CASPubMedPubMed Central Google Scholar
Balciunaite, E. et al. Pocket protein complexes are recruited to distinct targets in quiescent and proliferating cells. Mol. Cell. Biol.25, 8166–8178 (2005). ArticleCASPubMedPubMed Central Google Scholar
Beijersbergen, R. L. et al. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo. Genes Dev.8, 2680–2690 (1994). ArticleCASPubMed Google Scholar
Gaubatz, S., Lees, J. A., Lindeman, G. J. & Livingston, D. M. E2F4 is exported from the nucleus in a CRM1-dependent manner. Mol. Cell. Biol.21, 1384–1392 (2001). ArticleCASPubMedPubMed Central Google Scholar
Litovchick, L. et al. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol. Cell26, 539–551 (2007). ArticleCASPubMed Google Scholar
Chicas, A. et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell17, 376–387 (2010). ArticleCASPubMedPubMed Central Google Scholar
de Bruin, R. A. et al. Cln3 activates G1-Specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell117, 887–898 (2004). ArticleCASPubMed Google Scholar
Costanzo, M. et al. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell117, 899–913 (2004). Establishes, together with reference 47, the role of Whi5 in G1 cyclin–Cdk-mediated activation of G1–S transcription in budding yeast. ArticleCASPubMed Google Scholar
de Bruin, R. A. et al. Constraining G1-Specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Mol. Cell23, 483–496 (2006). Shows that the transcriptional co-repressor Nrm1 is involved in a negative feedback mechanism to turn off G1–S transcription in budding and fission yeast. ArticleCASPubMed Google Scholar
Wijnen, H., Landman, A. & Futcher, B. The G1 cyclin Cln3 promotes cell cycle entry via the transcription factor Swi6. Mol. Cell. Biol.22, 4402–4418 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ferrezuelo, F., Colomina, N., Futcher, B. & Aldea, M. The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle. Genome Biol.11, R67 (2012). ArticleCAS Google Scholar
Bean, J. M., Siggia, E. D. & Cross, F. R. High functional overlap between MluI cell-cycle box binding factor and Swi4/6 cell-cycle box binding factor in the G1/S transcriptional program in Saccharomyces cerevisiae. Genetics171, 49–61 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kosugi, S., Hasebe, M., Tomita, M. & Yanagawa, H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl Acad. Sci. USA106, 10171–10176 (2009). ArticlePubMedPubMed Central Google Scholar
Skotheim, J. M., Di Talia, S., Siggia, E. D. & Cross, F. R. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature454, 291–296 (2008). Establishes the positive feedback mechanism required for robust activation of G1–S transcription. ArticleCASPubMedPubMed Central Google Scholar
Doncic, A., Falleur-Fettig, M. & Skotheim, J. M. Distinct interactions select and maintain a specific cell fate. Mol. Cell43, 528–539 (2011). ArticleCASPubMedPubMed Central Google Scholar
Eser, U., Falleur-Fettig, M., Johnson, A. & Skotheim, J. M. Commitment to a cellular transition precedes genome-wide transcriptional change. Mol. Cell43, 515–527 (2011). Identifies differential timing for the expression of G1–S genes in yeast and humans and shows the importance of feedback first regulation. ArticleCASPubMedPubMed Central Google Scholar
Bracken, A. P., Ciro, M., Cocito, A. & Helin, K. E2F target genes: unraveling the biology. Trends Biochem. Sci.29, 409–417 (2004). ArticleCASPubMed Google Scholar
Yung, Y., Walker, J. L., Roberts, J. M. & Assoian, R. K. A Skp2 autoinduction loop and restriction point control. J. Cell Biol.178, 741–747 (2007). ArticleCASPubMedPubMed Central Google Scholar
Johnson, D. G., Ohtani, K. & Nevins, J. R. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev.8, 1514–1525 (1994). ArticleCASPubMed Google Scholar
Foster, D. A., Yellen, P., Xu, L. & Saqcena, M. Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer1, 1124–1131 (2010). ArticleCASPubMedPubMed Central Google Scholar
Martinsson, H. S., Starborg, M., Erlandsson, F. & Zetterberg, A. Single cell analysis of G1 check points-the relationship between the restriction point and phosphorylation of pRb. Exp. Cell Res.305, 383–391 (2005). ArticleCASPubMed Google Scholar
Hitomi, M. et al. p27Kip1 and cyclin dependent kinase 2 regulate passage through the restriction point. Cell Cycle5, 2281–2289 (2006). ArticleCASPubMed Google Scholar
Schwob, E., Bohm, T., Mendenhall, M. D. & Nasmyth, K. The B-type cyclin kinase inhibitor p40_SIC1_ controls the G1 to S transition in S. cerevisiae. Cell79, 233–244 (1994). ArticleCASPubMed Google Scholar
Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature414, 514–521 (2001). ArticleCASPubMed Google Scholar
Koivomagi, M. et al. Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. Nature480, 128–131 (2012). Establishes the role of semi-processive multi-site phosphorylation events in the degradation of the Cdk inhibitor Sic1. ArticleCAS Google Scholar
Masumoto, H., Muramatsu, S., Kamimura, Y. & Araki, H. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature415, 651–655 (2002). ArticleCASPubMed Google Scholar
Zegerman, P. & Diffley, J. F. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature445, 281–285 (2007). ArticleCASPubMed Google Scholar
Kang, Y. H., Galal, W. C., Farina, A., Tappin, I. & Hurwitz, J. Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc. Natl Acad. Sci. USA109, 6042–6047 (2012). ArticlePubMedPubMed Central Google Scholar
Wilmes, G. M. et al. Interaction of the S-phase cyclin Clb5 with an 'RXL' docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. Genes Dev.18, 981–991 (2004). ArticleCASPubMedPubMed Central Google Scholar
Koivomagi, M. et al. Dynamics of Cdk1 substrate specificity during the cell cycle. Mol. Cell42, 610–623 (2012). ArticleCAS Google Scholar
Loog, M. & Morgan, D. O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature434, 104–108 (2005). ArticleCASPubMed Google Scholar
Stern, B. & Nurse, P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet.12, 345–350 (1996). ArticleCASPubMed Google Scholar
Amon, A., Tyers, M., Futcher, B. & Nasmyth, K. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell74, 993–1007 (1993). ArticleCASPubMed Google Scholar
de Bruin, R. A., Kalashnikova, T. I. & Wittenberg, C. Stb1 collaborates with other regulators to modulate the G1-Specific transcriptional circuit. Mol. Cell. Biol.28, 6919–6928 (2008). ArticleCASPubMedPubMed Central Google Scholar
Siegmund, R. F. & Nasmyth, K. A. The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6. Mol. Cell. Biol.16, 2647–2655 (1996). ArticleCASPubMedPubMed Central Google Scholar
Koch, C., Schleiffer, A., Ammerer, G. & Nasmyth, K. Switching transcription on and off during the yeast cell cycle: Cln/Cdc28 kinases activate bound transcription factor SBF (Swi4/Swi6) at start, whereas Clb/Cdc28 kinases displace it from the promoter in G2. Genes Dev.10, 129–141 (1996). ArticleCASPubMed Google Scholar
Moll, T. et al. Transcription factors important for starting the cell cycle in yeast. Phil. Trans. R. Soc. Lond. B340, 351–360 (1993). ArticleCAS Google Scholar
Xu, M., Sheppard, K. A., Peng, C. Y., Yee, A. S. & Piwnica-Worms, H. Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation. Mol. Cell. Biol.14, 8420–8431 (1994). ArticleCASPubMedPubMed Central Google Scholar
Dynlacht, B. D., Flores, O., Lees, J. A. & Harlow, E. Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes Dev.8, 1772–1786 (1994). ArticleCASPubMed Google Scholar
Krek, W. et al. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell78, 161–172 (1994). ArticleCASPubMed Google Scholar
Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol.1, 193–199 (1999). ArticleCASPubMed Google Scholar
Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev.13, 1181–1189 (1999). ArticleCASPubMedPubMed Central Google Scholar
Marti, A., Wirbelauer, C., Scheffner, M. & Krek, W. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nature Cell Biol.1, 14–19 (1999). ArticleCASPubMed Google Scholar
Campanero, M. R. & Flemington, E. K. Regulation of E2F through ubiquitin–proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc. Natl Acad. Sci. USA94, 2221–2226 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hateboer, G., Kerkhoven, R. M., Shvarts, A., Bernards, R. & Beijersbergen, R. L. Degradation of E2F by the ubiquitin–proteasome pathway: regulation by retinoblastoma family proteins and adenovirus transforming proteins. Genes Dev.10, 2960–2970 (1996). ArticleCASPubMed Google Scholar
Aligianni, S. et al. The fission yeast homeodomain protein Yox1p binds to MBF and confines MBF-dependent cell-cycle transcription to G1–S via negative feedback. PLoS Genet.5, e1000626 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ostapenko, D. & Solomon, M. J. Anaphase promoting complex-dependent degradation of transcriptional repressors Nrm1 and Yhp1 in Saccharomyces cerevisiae. Mol. Biol. Cell22, 2175–2184 (2011). ArticleCASPubMedPubMed Central Google Scholar
Li, J. et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev. Cell14, 62–75 (2008). ArticleCASPubMedPubMed Central Google Scholar
Westendorp, B. et al. E2F7 represses a network of oscillating cell cycle genes to control S-phase progression. Nucleic Acids Res.40, 3511–3523 (2012). Establishes a role for E2F7 in the repression of G1–S transcription during S phase in mammalian cells. ArticleCASPubMed Google Scholar
Lyons, T. E., Salih, M. & Tuana, B. S. Activating E2Fs mediate transcriptional regulation of human E2F6 repressor. Am. J. Physiol. Cell Physiol.290, C189–C199 (2006). ArticleCASPubMed Google Scholar
Moon, N. S. & Dyson, N. E2F7 and E2F8 keep the E2F family in balance. Dev. Cell14, 1–3 (2008). ArticleCASPubMed Google Scholar
Cartwright, P., Muller, H., Wagener, C., Holm, K. & Helin, K. E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. Oncogene17, 611–623 (1998). ArticleCASPubMed Google Scholar
de Bruin, A. et al. Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem.278, 42041–42049 (2003). ArticleCASPubMed Google Scholar
Di Stefano, L., Jensen, M. R. & Helin, K. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J.22, 6289–6298 (2003). ArticleCASPubMedPubMed Central Google Scholar
Logan, N. et al. E2F-8: an E2F family member with a similar organization of DNA-binding domains to E2F-7. Oncogene24, 5000–5004 (2005). ArticleCASPubMed Google Scholar
Trimarchi, J. M. et al. E2F-6, a member of the E2F family that can behave as a transcriptional repressor. Proc. Natl Acad. Sci. USA95, 2850–2855 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lammens, T., Li, J., Leone, G. & De Veylder, L. Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol.19, 111–118 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bertoli, C., Klier, S., McGowan, C., Wittenberg, C. & de Bruin, R. A. M. Chk1 inhibits E2F6 repressor function in response to replication stress to maintain cell cycle transcription. Curr. Biol. (in the press).
Giangrande, P. H. et al. A role for E2F6 in distinguishing G1/S- and G2/M-specific transcription. Genes Dev.18, 2941–2951 (2004). Proposes that E2F6 could be involved in a negative feedback loop to repress G1–S transcription when cells progress to S phase. ArticleCASPubMedPubMed Central Google Scholar
Powell, B. L. et al. Leukapheresis induced changes in cell cycle distribution and nucleoside transporters in patients with untreated acute myeloid leukemia. Leukemia5, 1037–1042 (1991). CASPubMed Google Scholar
Bastos de Oliveira, F. M., Harris, M. R., Brazauskas, P., de Bruin, R. A. & Smolka, M. B. Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes. EMBO J.31, 1798–1810 (2012). ArticleCASPubMedPubMed Central Google Scholar
Travesa, A. et al. DNA replication stress differentially regulates G1/S genes via Rad53-dependent inactivation of Nrm1. EMBO J.31, 1811–1822 (2012). ArticleCASPubMedPubMed Central Google Scholar
Smolka, M. B., Bastos de Oliveira, F. M., Harris, M. R. & de Bruin, R. A. The checkpoint transcriptional response: Make sure to turn it off once you are satisfied. Cell Cycle11, 3166–3174 (2012). ArticleCASPubMedPubMed Central Google Scholar
Jensen, L. J., Jensen, T. S., de Lichtenberg, U., Brunak, S. & Bork, P. Co-evolution of transcriptional and post-translational cell-cycle regulation. Nature443, 594–597 (2006). ArticleCASPubMed Google Scholar
Trojer, P. et al. L3MBTL2 protein acts in concert with PcG protein-mediated monoubiquitination of H2A to establish a repressive chromatin structure. Mol. Cell42, 438–450 (2011). ArticleCASPubMedPubMed Central Google Scholar
Xu, X. et al. A comprehensive ChIP–chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res.17, 1550–1561 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zegerman, P. & Diffley, J. F. DNA replication as a target of the DNA damage checkpoint. DNA Repair (Amst.)8, 1077–1088 (2009). ArticleCAS Google Scholar
Chu, Z. et al. Modulation of cell cycle-specific gene expressions at the onset of S phase arrest contributes to the robust DNA replication checkpoint response in fission yeast. Mol. Biol. Cell18, 1756–1767 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gomez-Escoda, B. et al. Yox1 links MBF-dependent transcription to completion of DNA synthesis. EMBO Rep.12, 84–89 (2011). ArticleCASPubMed Google Scholar
Caetano, C., Klier, S. & de Bruin, R. A. Phosphorylation of the MBF repressor Yox1p by the DNA replication checkpoint keeps the G1/S cell-cycle transcriptional program active. _PLoS ONE_6, e17211 (2011).
de Bruin, R. A. et al. DNA replication checkpoint promotes G1–S transcription by inactivating the MBF repressor Nrm1. Proc. Natl Acad. Sci. USA105, 11230–11235 (2008). Establishes, together with reference 98, the mechanism of how the DNA replication checkpoint co-opts the cell cycle transcriptional programme to respond to replication stress in fission yeast and in human cells. ArticlePubMedPubMed Central Google Scholar
Dutta, C. et al. The DNA replication checkpoint directly regulates MBF-dependent G1/S transcription. Mol. Cell. Biol.28, 5977–5985 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ivanova, T., Gomez-Escoda, B., Hidalgo, E. & Ayte, J. G1/S transcription and the DNA synthesis checkpoint: common regulatory mechanisms. Cell Cycle10, 912–915 (2011). ArticleCASPubMed Google Scholar
Purtill, F. S. et al. A homeodomain transcription factor regulates the DNA replication checkpoint in yeast. Cell Cycle10, 664–670 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lin, W. C., Lin, F. T. & Nevins, J. R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev.15, 1833–1844 (2001). CASPubMedPubMed Central Google Scholar
Pediconi, N. et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nature Cell Biol.5, 552–558 (2003). ArticleCASPubMed Google Scholar
Stevens, C. & La Thangue, N. B. E2F and cell cycle control: a double-edged sword. Arch. Biochem. Biophys.412, 157–169 (2003). ArticleCASPubMed Google Scholar
Stevens, C., Smith, L. & La Thangue, N. B. Chk2 activates E2F-1 in response to DNA damage. Nature Cell Biol.5, 401–409 (2003). ArticleCASPubMed Google Scholar
Urist, M. Tanaka, T., Poyurovsky, M. V. & Prives, C. p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev.18, 3041–3054 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wang, B., Liu, K., Lin, F. T. & Lin, W. C. A role for 14-3-3 tau in E2F1 stabilization and DNA damage-induced apoptosis. J. Biol. Chem.279, 54140–54152 (2004). ArticleCASPubMed Google Scholar
Zhang, H. S., Postigo, A. A. & Dean, D. C. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFβ, and contact inhibition. Cell97, 53–61 (1999). ArticleCASPubMed Google Scholar
Hurford, R. K. Jr., Cobrinik, D., Lee, M. H. & Dyson, N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev.11, 1447–1463 (1997). ArticleCASPubMed Google Scholar
Vairo, G., Livingston, D. M. & Ginsberg, D. Functional interaction between E2F-4 and p130: evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev.9, 869–881 (1995). ArticleCASPubMed Google Scholar
Moberg, K., Starz, M. A. & Lees, J. A. E2F-4 switches from p130 to p107 and pRB in response to cell cycle reentry. Mol. Cell. Biol.16, 1436–1449 (1996). ArticleCASPubMedPubMed Central Google Scholar
Deschenes, C., Alvarez, L., Lizotte, M. E., Vezina, A. & Rivard, N. The nucleocytoplasmic shuttling of E2F4 is involved in the regulation of human intestinal epithelial cell proliferation and differentiation. J. Cell. Physiol.199, 262–273 (2004). ArticleCASPubMed Google Scholar
Hijmans, E. M., Voorhoeve, P. M., Beijersbergen, R. L., van 't Veer, L. J. & Bernards, R. E2F-5, a new E2F family member that interacts with p130 in vivo. Mol. Cell. Biol.15, 3082–3089 (1995). ArticleCASPubMedPubMed Central Google Scholar
Chen, C. R., Kang, Y., Siegel, P. M. & Massague, J. E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell110, 19–32 (2002). ArticleCASPubMed Google Scholar
Christensen, J. et al. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription. Nucleic Acids Res.33, 5458–5470 (2005). ArticleCASPubMedPubMed Central Google Scholar
Maiti, B. et al. Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem.280, 18211–18220 (2005). ArticleCASPubMed Google Scholar
Bhattacharya, S. et al. SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene22, 2443–2451 (2003). ArticleCASPubMed Google Scholar
Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell3, 421–429 (2003). ArticleCASPubMed Google Scholar
Sorensen, C. S. & Syljuasen, R. G. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res.40, 477–486 (2012). ArticleCASPubMed Google Scholar
Bartek, J., Lukas, C. & Lukas, J. Checking on DNA damage in S phase. Nature Rev. Mol. Cell Biol.5, 792–804 (2004). ArticleCAS Google Scholar
Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell137, 413–431 (2009). ArticleCASPubMed Google Scholar
Bhaduri, S. & Pryciak, P. M. Cyclin-specific docking motifs promote phosphorylation of yeast signaling proteins by G1/S Cdk complexes. Curr. Biol.21, 1615–1623 (2011). ArticleCASPubMedPubMed Central Google Scholar