Autophagy at the crossroads of catabolism and anabolism (original) (raw)
Mizushima, N. & Klionsky, D. J. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr.27, 19–40 (2007). ArticleCASPubMed Google Scholar
Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol.16, 495–501 (2014). ArticleCASPubMed Google Scholar
Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature432, 1032–1036 (2004). ArticleCASPubMed Google Scholar
Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature441, 880–884 (2006). ArticleCASPubMed Google Scholar
Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature441, 885–889 (2006). References 4 and 5 demonstrate the importance of basal autophagy in normal neuronal function. ArticleCASPubMed Google Scholar
Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell147, 728–741 (2011). ArticleCASPubMed Google Scholar
Li, W.-W., Li, J. & Bao, J.-K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci.69, 1125–1136 (2012). ArticleCASPubMed Google Scholar
Cuervo, A. M. & Wong, E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res.24, 92–104 (2014). ArticleCASPubMed Google Scholar
Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol.14, 759–774 (2013). ArticleCASPubMed Google Scholar
Rogov, V., Dötsch, V., Johansen, T. & Kirkin, V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell53, 167–178 (2014). ArticleCASPubMed Google Scholar
Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell. Biol.10, 458–467 (2009). ArticleCASPubMed Google Scholar
Yang, Z. & Klionsky, D. J. An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol.335, 1–32 (2009). CASPubMedPubMed Central Google Scholar
Huang, R. et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell57, 456–466 (2015). ArticleCASPubMed Google Scholar
Suzuki, K. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J.20, 5971–5981 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kim, J., Huang, W. P., Stromhaug, P. E. & Klionsky, D. J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J. Biol. Chem.277, 763–773 (2002). ArticleCASPubMed Google Scholar
Axe, E. L., Walker, S. A., Manifava, M. & Chandra, P. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol.182, 685–701 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell141, 656–667 (2010). CASPubMedPubMed Central Google Scholar
Mari, M. et al. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol.190, 1005–1022 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yamamoto, H., Kakuta, S. & Watanabe, T. M. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol.198, 219–233 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hamasaki, M. et al. Autophagosomes form at ER–mitochondria contact sites. Nature495, 389–393 (2013). ArticleCASPubMed Google Scholar
Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol.12, 747–757 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lu, K., Psakhye, I. & Jentsch, S. Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell158, 549–563 (2014). This paper identifies a new class of ubiquitin–ATG8 or LC3 adaptor proteins (CUET proteins) that do not contain typical UBDs but instead possess a CUE domain that binds ubiquitylated proteins. ArticleCASPubMed Google Scholar
Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell17, 98–109 (2009). ArticleCASPubMedPubMed Central Google Scholar
Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria. Autophagy5, 1203–1205 (2009). ArticleCASPubMed Google Scholar
Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell17, 87–97 (2009). ArticleCASPubMed Google Scholar
Zhang, H. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem.283, 10892–10903 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA104, 19500–19505 (2007). ArticleCASPubMedPubMed Central Google Scholar
Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep.11, 45–51 (2010). ArticleCASPubMed Google Scholar
Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol.14, 1–10 (2012). Google Scholar
Zhu, Y. et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem.288, 1099–1113 (2013). ArticleCASPubMed Google Scholar
Farré, J.-C., Manjithaya, R., Mathewson, R. D. & Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell14, 365–376 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Motley, A. M., Nuttall, J. M. & Hettema, E. H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J.31, 2852–2868 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kim, P. K., Hailey, D. W., Mullen, R. T. & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl Acad. Sci. USA105, 20567–20574 (2008). ArticleCASPubMedPubMed Central Google Scholar
Deosaran, E. et al. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci.126, 939–952 (2013). CASPubMed Google Scholar
Schuck, S., Gallagher, C. M. & Walter, P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J. Cell Sci.127, 4078–4088 (2014). CASPubMedPubMed Central Google Scholar
Schreiber, A. & Peter, M. Substrate recognition in selective autophagy and the ubiquitin–proteasome system. Biochim. Biophys. Acta1843, 163–181 (2014). ArticleCASPubMed Google Scholar
Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature509, 105–109 (2014). ArticleCASPubMedPubMed Central Google Scholar
Dowdle, W. E. et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol.16, 1069–1079 (2014). References 43 and 44 reveal that ferritin is selectively degraded via autophagy with the aid of the newly identified cargo receptor NCOA4. ArticleCASPubMed Google Scholar
Schworer, C. M., Shiffer, K. A. & Mortimore, G. E. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J. Biol. Chem.256, 7652–7658 (1981). ArticleCASPubMed Google Scholar
Seglen, P. O. & Gordon, P. B. Vanadate inhibits protein degradation in isolated rat hepatocytes. J. Biol. Chem.256, 7699–7701 (1981). ArticleCASPubMed Google Scholar
Onodera, J. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem.280, 31582–31586 (2005). ArticleCASPubMed Google Scholar
Suzuki, S. W., Onodera, J. & Ohsumi, Y. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction. PLoS ONE6, e17412 (2011). ArticleCASPubMedPubMed Central Google Scholar
Tsukamoto, S. et al. Autophagy is essential for preimplantation development of mouse embryos. Science321, 117–120 (2008). ArticleCASPubMed Google Scholar
Narita, M. et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science332, 966–970 (2011). This paper reports the discovery of a novel membrane compartment called the TASCC, in which autophagy-derived amino acids are used for the synthesis of secretory proteins. ArticleCASPubMedPubMed Central Google Scholar
Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell120, 237–248 (2005). ArticleCASPubMed Google Scholar
Warr, M. R. et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature494, 323–327 (2013). This article provides evidence that autophagy promotes the survival and metabolic adaptation of normal haematopoietic stem cells, but not their myeloid progeny, in response to starvation. ArticleCASPubMedPubMed Central Google Scholar
Mathew, R. & White, E. Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger. Cold Spring Harb. Symp. Quant. Biol.76, 389–396 (2011). ArticleCASPubMed Google Scholar
Kenific, C. M. & Debnath, J. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol.1, 37–45 (2015). ArticleCAS Google Scholar
Mathew, R. et al. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol. Cell55, 916–930 (2014). ArticleCASPubMedPubMed Central Google Scholar
Las, G., Serada, S. B., Wikstrom, J. D., Twig, G. & Shirihai, O. S. Fatty acids suppress autophagic turnover in β-cells. J. Biol. Chem.286, 42534–42544 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab.11, 467–478 (2010). A paper demonstrating that defective autophagy results in impaired insulin sensitivity and is linked to ER stress in obesity and diabetes. ArticleCASPubMedPubMed Central Google Scholar
Lim, Y.-M. et al. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat. Commun.5, 4934 (2014). ArticleCASPubMed Google Scholar
Martinez-Vicente, M. et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci.13, 567–576 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hernández-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology142, 938–946 (2012). ArticlePubMed Google Scholar
Wu, X., Sakata, N., Dixon, J. & Ginsberg, H. N. Exogenous VLDL stimulates apolipoprotein B secretion from HepG2 cells by both pre- and post-translational mechanisms. J. Lipid Res.35, 1200–1210 (1994). ArticleCASPubMed Google Scholar
O'Rourke, E. J. & Ruvkun, G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol.15, 668–676 (2013). This article demonstrates that lysosomal lipolysis is tightly regulated by two transcription factors, MXL-3 and HLH-30, the activity of which is coupled to the nutritional status of the cell. ArticleCASPubMedPubMed Central Google Scholar
Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol.15, 647–658 (2013). ArticleCASPubMedPubMed Central Google Scholar
Shibata, M. et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Commun.382, 419–423 (2009). ArticleCASPubMed Google Scholar
Schulze, R. J. et al. Lipid droplet breakdown requires Dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J. Cell Biol.203, 315–326 (2013). ArticleCASPubMedPubMed Central Google Scholar
Baerga, R., Zhang, Y., Chen, P.-H., Goldman, S. & Jin, S. Targeted deletion of autophagy-related 5 (Atg5) impairs adipogenesis in a cellular model and in mice. Autophagy5, 1118–1130 (2009). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (Atg7) in mice reveals a role in adipogenesis. Proc. Natl Acad. Sci. USA106, 19860–19865 (2009). References 82 and 83 demonstrate that adipocyte-specific deletion ofAtg7affects the differentiation of WAT and results in BAT-like features. ArticleCASPubMedPubMed Central Google Scholar
Martinez-Lopez, N. et al. Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development. EMBO Rep.14, 795–803 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kim, K. H. et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med.19, 83–92 (2013). ArticleCASPubMed Google Scholar
Meng, Q. & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IκB kinase β (IKKβ)/NF-κB pathway. J. Biol. Chem.286, 32324–32332 (2011). ArticleCASPubMedPubMed Central Google Scholar
Coupé, B. et al. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab.15, 47–255 (2012). ArticleCAS Google Scholar
Quan, W. et al. Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology153, 1817–1826 (2012). ArticleCASPubMed Google Scholar
Malhotra, R., Warne, J. P., Salas, E., Xu, A. W. & Debnath, J. Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity. Autophagy11, 145–154 (2015). PubMedPubMed Central Google Scholar
Kalamidas, S. A. & Kotoulas, O. B. Glycogen autophagy in newborn rat hepatocytes. Histol. Histopathol.15, 1011–1018 (2000). CASPubMed Google Scholar
Kotoulas, O. B., Kalamidas, S. A. & Kondomerkos, D. J. Glycogen autophagy in glucose homeostasis. Pathol. Res. Pract.202, 631–638 (2006). ArticleCASPubMed Google Scholar
Kondomerkos, D. J., Kalamidas, S. A., Kotoulas, O. B. & Hann, A. C. Glycogen autophagy in the liver and heart of newborn rats. The effects of glucagon, adrenalin or rapamycin. Histol. Histopathol.20, 689–696 (2005). CASPubMed Google Scholar
Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell15, 1101–1111 (2003). ArticlePubMed Google Scholar
Karsli-Uzunbas, G. et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov.4, 914–927 (2014). This study uses acute ablation of autophagy using conditional whole-body deletion ofAtg7in a mouse model to demonstrate that autophagy deletion impairs glucose homeostasis. ArticleCASPubMedPubMed Central Google Scholar
Malicdan, M. C. V. & Nishino, I. Autophagy in lysosomal myopathies. Brain Pathol.22, 82–88 (2012). ArticlePubMed Google Scholar
Raben, N. et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet.17, 3897–3908 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shea, L. & Raben, N. Autophagy in skeletal muscle: implications for Pompe disease. Int. J. Clin. Pharmacol. Ther.47, S42–S47 (2009). CASPubMed Google Scholar
Zirin, J., Nieuwenhuis, J. & Perrimon, N. Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol.11, e1001708 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Ebato, C. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab.8, 325–332 (2008). ArticleCASPubMed Google Scholar
Jung, H. S. et al. Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia. Cell Metab.8, 318–324 (2008). ArticleCASPubMed Google Scholar
Marsh, B. J. et al. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells. Mol. Endocrinol.21, 2255–2269 (2007). ArticleCASPubMed Google Scholar
Goginashvili, A. et al. Insulin secretory granules control autophagy in pancreatic β cells. Science347, 878–882 (2015). ArticleCASPubMed Google Scholar
Lock, R., Kenific, C. M., Leidal, A. M., Salas, E. & Debnath, J. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov.4, 466–479 (2014). ArticleCASPubMedPubMed Central Google Scholar
Pantopoulos, K., Porwal, S. K., Tartakoff, A. & Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry51, 5705–5724 (2012). ArticleCASPubMed Google Scholar
Asano, T. et al. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol. Cell. Biol.31, 2040–2052 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kishi-Itakura, C., Koyama-Honda, I., Itakura, E. & Mizushima, N. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci.127, 4089–4102 (2014). ArticleCASPubMed Google Scholar
Yeh, S. & Chang, C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl Acad. Sci. USA93, 5517–5521 (1996). ArticleCASPubMedPubMed Central Google Scholar
Haack, T. B. et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am. J. Hum. Genet.91, 1144–1149 (2012). ArticleCASPubMedPubMed Central Google Scholar
Saitsu, H. et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet.45, 445–449 (2013). ArticleCASPubMed Google Scholar
Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature451, 1069–1075 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nakai, A. et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med.13, 619–624 (2007). ArticleCASPubMed Google Scholar
Masiero, E. et al. Autophagy is required to maintain muscle mass. Cell Metab.10, 507–515 (2009). ArticleCASPubMed Google Scholar
Pandey, U. B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature447, 860–864 (2007). ArticleCAS Google Scholar
Zheng, Q., Su, H., Tian, Z. & Wang, X. Proteasome malfunction activates macroautophagy in the heart. Am. J. Cardiovasc. Dis.1, 214–226 (2011). CASPubMedPubMed Central Google Scholar
Suraweera, A., Münch, C., Hanssum, A. & Bertolotti, A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell48, 242–253 (2012). ArticleCASPubMedPubMed Central Google Scholar
Vabulas, R. M. & Hartl, F. U. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science310, 1960–1963 (2005). ArticleCASPubMed Google Scholar
Quy, P. N., Kuma, A., Pierre, P. & Mizushima, N. Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation. J. Biol. Chem.288, 1125–1134 (2013). ArticleCASPubMed Google Scholar
Teckman, J. H. & Perlmutter, D. H. Retention of mutant α1-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am. J. Physiol. Gastrointest. Liver Physiol.279, G961–G974 (2000). ArticleCASPubMed Google Scholar
Bernales, S., McDonald, K. L. & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol.4, e423 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Yorimitsu, T., Nair, U., Yang, Z. & Klionsky, D. J. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem.281, 30299–30304 (2006). ArticleCASPubMed Google Scholar
Ogata, M. et al. Reticulophagy and ribophagy: regulated degradation of protein production factories. Mol. Cell. Biol.2012, 9220–9231 (2006). ArticleCAS Google Scholar
Ding, W. X. et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem.282, 4702–4710 (2007). ArticleCASPubMed Google Scholar
Nickel, W. & Rabouille, C. Mechanisms of regulated unconventional protein secretion. Nat. Rev. Mol. Cell Biol.10, 148–155 (2009). ArticleCASPubMed Google Scholar
Manjithaya, R., Anjard, C., Loomis, W. F. & Subramani, S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol.188, 537–546 (2010). ArticleCASPubMedPubMed Central Google Scholar
Duran, J. M., Anjard, C., Stefan, C., Loomis, W. F. & Malhotra, V. Unconventional secretion of Acb1 is mediated by autophagosomes. J. Cell Biol.188, 527–536 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bruns, C., McCaffery, J. M. & Curwin, A. J. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J. Cell Biol.195, 979–992 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gee, H. Y., Noh, S. H., Tang, B. L., Kim, K. H. & Lee, M. G. Rescue of ΔF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell146, 746–760 (2011). ArticleCASPubMed Google Scholar
Kinseth, M. A. et al. The Golgi-associated protein GRASP is required for unconventional protein secretion during development. Cell130, 524–534 (2007). ArticleCASPubMed Google Scholar
Cruz-Garcia, D. et al. Remodeling of secretory compartments creates CUPS during nutrient starvation. J. Cell Biol.207, 695–703 (2014). ArticleCASPubMedPubMed Central Google Scholar
Ushio, H. et al. Crucial role for autophagy in degranulation of mast cells. J. Allergy Clin. Immunol.127, 1267–1276.e6 (2011). ArticleCASPubMed Google Scholar
Murrow, L., Malhotra, R. & Debnath, J. ATG12–ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat. Cell Biol.17, 300–310 (2015). ArticleCASPubMedPubMed Central Google Scholar
Deretic, V., Jiang, S. & Dupont, N. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol.22, 397–406 (2012). ArticlePubMedPubMed Central Google Scholar
Raben, N., Wong, A., Ralston, E. & Myerowitz, R. Autophagy and mitochondria in Pompe disease: nothing is so new as what has long been forgotten. Am. J. Med. Genet. C Semin. Med. Genet.160C, 13–21 (2012). ArticlePubMedCAS Google Scholar
Nishino, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature406, 906–910 (2000). ArticleCASPubMed Google Scholar