Sorting out the cellular functions of sorting nexins (original) (raw)
Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol.12, 575–625 (1996). ArticleCASPubMed Google Scholar
Teasdale, R. D., Loci, D., Houghton, F., Karlsson, L. & Gleeson, P. A. A large family of endosome-localized proteins related to sorting nexin 1. Biochem. J.358, 7–16 (2001). CASPubMedPubMed Central Google Scholar
Miaczynska, M. & Zerial, M. Mosaic organization of the endocytic pathway. Exp. Cell Res.272, 8–14 (2002). CASPubMed Google Scholar
Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol.13, 485–492 (2001). CASPubMed Google Scholar
Xu, Y., Seet, L. F., Hanson, B. & Hong, W. The Phox homology (PX) domain, a new player in phosphoinositide signalling. Biochem. J.360, 513–530 (2001). CASPubMedPubMed Central Google Scholar
Ponting, C. P. Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns3-kinases: binding partners of SH3 domains? Protein Sci.5, 2353–2357 (1996). This paper was the first to define the PX domain. CASPubMedPubMed Central Google Scholar
Cheever, M. L. et al. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biol.3, 613–618 (2001). CASPubMed Google Scholar
Ellson, C. D. et al. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Nature Cell Biol.3, 679–682 (2001). CASPubMed Google Scholar
Kanai, F. et al. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature Cell Biol.3, 675–678 (2001). This paper was one of the first to show that PX domains bind phosphorylated phosphoinositides. CASPubMed Google Scholar
Kurten, R. C., Cadena, D. L. & Gill, G. N. Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science272, 1008–1110 (1996). This was the first report of a mammalian sorting nexin. CASPubMed Google Scholar
Rothman, J. H. & Stevens, T. H. Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell47, 1041–1051 (1986). CASPubMed Google Scholar
Rothman, J. H., Raymond, C. K., Gilbert, T., O'Hara, P. J. & Stevens, T. H. A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell61, 1063–1074 (1990). CASPubMed Google Scholar
Nothwehr, S. F., Conibear, E. & Stevens, T. H. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane. J. Cell Biol.129, 35–46 (1995). CASPubMed Google Scholar
Ekena, K. & Stevens, T. H. The Saccharomyces cerevisiae MVP1 gene interacts with VPS1 and is required for vacuolar protein sorting. Mol. Cell. Biol.15, 1671–1678 (1995). CASPubMedPubMed Central Google Scholar
Horazdovsky, B. F. et al. A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol. Biol. Cell8, 1529–1541 (1997). CASPubMedPubMed Central Google Scholar
Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P. & Bork, P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res.28, 231–234 (2000). CASPubMedPubMed Central Google Scholar
Lupas, A. Coiled coils: new structures and new functions. Trends Biochem. Sci.21, 375–382 (1996). CASPubMed Google Scholar
Mayer, B. J. SH3 domains: complexity in moderation. J. Cell Sci.114, 1253–1263 (2001). CASPubMed Google Scholar
Goebl, M. & Yanagida, M. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem. Sci.16, 173–177 (1991). CASPubMed Google Scholar
Lamb, J. R., Tugendreich, S. & Hieter, P. Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem. Sci.20, 257–259 (1995). CASPubMed Google Scholar
Shaw, R. J., Henry, M., Solomon, F. & Jacks, T. RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol. Biol. Cell9, 403–419 (1998). CASPubMedPubMed Central Google Scholar
Tsukita, S. & Yonemura, S. ERM proteins: head-to-tail regulation of actin–plasma membrane interaction. Trends Biochem. Sci.22, 53–58 (1997). CASPubMed Google Scholar
Hollinger, S. & Hepler, J. R. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol. Rev.54, 527–559 (2002). CASPubMed Google Scholar
Zheng, B. et al. RGS-PX1, a GAP for GαS and sorting nexin in vesicular trafficking. Science294, 1939–1942 (2001). CASPubMed Google Scholar
Ponting, C. P. & Benjamin, D. R. A novel family of Ras-binding domains. Trends Biochem. Sci.21, 422–425. (1996) CASPubMed Google Scholar
Shaw, G. The pleckstrin homology domain: an intriguing multifunctional protein module. Bioessays18, 35–46 (1996). CASPubMed Google Scholar
Harlan, J. E., Hajduk, P. J., Yoon, H. S. & Fesik, S. W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature371, 168–170 (1994). CASPubMed Google Scholar
Itoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science291, 1047–1051 (2001). CASPubMed Google Scholar
Patki, V., Lawe, D. C., Corvera, S., Virbasius, J. V. & Chawla, A. A functional PtdIns(3)P-binding motif. Nature394, 433–434 (1998). CASPubMed Google Scholar
Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science291, 1051–1055 (2001). CASPubMed Google Scholar
Lemmon, M. A. & Ferguson, K. M. Pleckstrin homology domains. Curr. Top. Microbiol. Immunol.228, 39–74 (1998). CASPubMed Google Scholar
Lemmon, M. A., Ferguson, K. M. & Abrams, C. S. Pleckstrin homology domains and the cytoskeleton. FEBS Lett.513, 71–76 (2002). CASPubMed Google Scholar
Lemmon, M. A. & Ferguson, K. M. Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides. Biochem. Soc. Trans.29, 377–384 (2001). CASPubMed Google Scholar
Gillooly, D. J., Simonsen, A. & Stenmark, H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem. J.355, 249–258 (2001). CASPubMedPubMed Central Google Scholar
Ago, T. et al. The PX domain as a novel phosphoinositide-binding module. Biochem. Biophys. Res. Commun.287, 733–738 (2001). CASPubMed Google Scholar
Matsui, Y., Matsui, R., Akada, R. & Toh-e, A. Yeast src homology region 3 domain-binding proteins involved in bud formation. J. Cell Biol.133, 865–878 (1996). CASPubMed Google Scholar
Nothwehr, S. F. & Hindes, A. E. The yeast VPS5/GRD2 gene encodes a sorting nexin-1-like protein required for localizing membrane proteins to the late Golgi. J. Cell Sci.110, 1063–1072 (1997). CASPubMed Google Scholar
Schwarz, D. G., Griffin, C. T., Schneider, E. A., Yee, D. & Magnuson, T. Genetic analysis of sorting nexins 1 and 2 reveals a redundant and essential function in mice. Mol. Biol. Cell13, 3588–3600 (2002). CASPubMedPubMed Central Google Scholar
Voos, W. & Stevens, T. H. Retrieval of resident late-Golgi membrane proteins from the prevacuolar compartment of Saccharomyces cerevisiae is dependent on the function of Grd19p. J. Cell Biol.140, 577–590 (1998). CASPubMedPubMed Central Google Scholar
Bravo, J. et al. The crystal structure of the PX domain from p40phox bound to phosphatidylinositol 3-phosphate. Mol. Cell8, 829–839 (2001). This paper reports the first crystal structure of a PX domain. CASPubMed Google Scholar
Xu, Y., Hortsman, H., Seet, L., Wong, S. H. & Hong, W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nature Cell Biol3, 658–666 (2001). CASPubMed Google Scholar
Xu, J., Liu, D., Gill, G. & Songyang, Z. Regulation of cytokine-independent survival kinase (CISK) by the Phox homology domain and phosphoinositides. J. Cell Biol.154, 699–705 (2001). CASPubMedPubMed Central Google Scholar
Song, X. et al. Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry40, 8940–8944 (2001). CASPubMed Google Scholar
Wishart, M. J., Taylor, G. S. & Dixon, J. E. Phoxy lipids: revealing PX domains as phosphoinositide binding modules. Cell105, 817–820 (2001). CASPubMed Google Scholar
Hiroaki, H., Ago, T., Ito, T., Sumimoto, H. & Kohda, D. Solution structure of the PX domain, a target of the SH3 domain. Nature Struct. Biol.8, 526–530 (2001). CASPubMed Google Scholar
Karathanassis, D. et al. Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J.21, 5057–5068 (2002). CASPubMedPubMed Central Google Scholar
Lu, J., Garcia, J., Dulubova, I., Sudhof, T. C. & Rizo, J. Solution structure of the Vam7p PX domain. Biochemistry41, 5956–5962 (2002). CASPubMed Google Scholar
Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol.142, 665–681 (1998). CASPubMedPubMed Central Google Scholar
Kurten, R. C. et al. Self-assembly and binding of a sorting nexin to sorting endosomes. J. Cell Sci.114, 1743–1756 (2001). CASPubMed Google Scholar
Haft, C. R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell11, 4105–4116 (2000). CASPubMedPubMed Central Google Scholar
Haft, C. R., de la Luz Sierra, M., Barr, V. A., Haft, D. H. & Taylor, S. I. Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol. Cell. Biol.18, 7278–7287 (1998). CASPubMedPubMed Central Google Scholar
Mu, F. T. et al. EEA1, an early endosome-associated protein. EEA1 is a conserved α-helical peripheral membrane protein flanked by cysteine 'fingers' and contains a calmodulin-binding IQ motif. J. Biol. Chem.270, 13503–13511 (1995). CASPubMed Google Scholar
Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol.4, 394–398 (2002). CASPubMed Google Scholar
Chin, L. S., Raynor, M. C., Wei, X., Chen, H. Q. & Li, L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J. Biol. Chem.276, 7069–7078 (2001). CASPubMed Google Scholar
Zhong, Q. et al. Endosomal localization and function of sorting nexin 1. Proc. Natl Acad. Sci. USA99, 6767–6772 (2002). CASPubMedPubMed Central Google Scholar
Yu, J. W. & Lemmon, M. A. All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J. Biol. Chem.276, 44179–44184 (2001). CASPubMed Google Scholar
Watton, S. J. & Downward, J. Akt/PKB localisation and 3′ phosphoinositide generation at sites of epithelial cell–matrix and cell–cell interaction. Curr. Biol.9, 433–436 (1999). CASPubMed Google Scholar
Oatey, P. B. et al. Confocal imaging of the subcellular distribution of phosphatidylinositol 3,4,5-trisphosphate in insulin- and PDGF-stimulated 3T3-L1 adipocytes. Biochem. J.344, 511–518 (1999). CASPubMedPubMed Central Google Scholar
Cozier, G. E. et al. The PX domain-dependent, 3-phosphoinositide-mediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J. Biol. Chem. 2002 Aug 26 (DOI: 10.1074/jbc.M206986200).
Otsuki, T., Kajigaya, S., Ozawa, K. & Liu, J. M. SNX5, a new member of the sorting nexin family, binds to the Fanconi anemia complementation group A protein. Biochem. Biophys. Res. Commun.265, 630–635 (1999). CASPubMed Google Scholar
Liu, J. M., Buchwald, M., Walsh, C. E. & Young, N. S. Fanconi anemia and novel strategies for therapy. Blood84, 3995–4007 (1994). CASPubMed Google Scholar
Parks, W. T. et al. Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-β family of receptor serine-threonine kinases. J. Biol. Chem.276, 19332–19339 (2001). CASPubMed Google Scholar
Ishibashi, Y. et al. Pim-1 translocates sorting nexin 6/TRAF4-associated factor 2 from cytoplasm to nucleus. FEBS Lett.506, 33–38 (2001). CASPubMed Google Scholar
Howard, L., Nelson, K. K., Maciewicz, R. A. & Blobel, C. P. Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J. Biol. Chem.274, 31693–31699 (1999). CASPubMed Google Scholar
Lundmark, R. & Carlsson, S. R. The β-appendages of the four adaptor-protein (AP) complexes: structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP-2. Biochem. J.362, 597–607 (2002). CASPubMedPubMed Central Google Scholar
Worby, C. A. et al. The sorting nexin, DSH3PX1, connects the axonal guidance receptor, Dscam, to the actin cytoskeleton. J. Biol. Chem.276, 41782–41789 (2001). CASPubMed Google Scholar
Robinson, M. S. & Bonifacino, J. S. Adaptor-related proteins. Curr. Opin. Cell Biol.13, 444–453 (2001). CASPubMed Google Scholar
Worby, C. A. et al. Drosophila Ack targets its substrate, the sorting nexin DSH3PX1, to a protein complex involved in axonal guidance. J. Biol. Chem.277, 9422–9428 (2002). CASPubMed Google Scholar
Lin, Q., Lo, C. G., Cerione, R. A. & Yang, W. The Cdc42 target ACK2 interacts with sorting nexin 9 (SH3PX1) to regulate epidermal growth factor receptor degradation. J. Biol. Chem.277, 10134–10138 (2002). CASPubMed Google Scholar
Schafer, D. A. Coupling actin dynamics and membrane dynamics during endocytosis. Curr. Opin. Cell Biol.14, 76–81 (2002). CASPubMed Google Scholar
De Vries, L., Zheng, B., Fischer, T., Elenko, E. & Farquhar, M. G. The regulator of G protein signaling family. Annu. Rev. Pharmacol. Toxicol.40, 235–271 (2000). CASPubMed Google Scholar
von Zastrow, M. & Mostov, K. Signal transduction. A new thread in an intricate web. Science294, 1845–1847 (2001). CASPubMed Google Scholar
Phillips, S. A., Barr, V. A., Haft, D. H., Taylor, S. I. & Haft, C. R. Identification and characterization of SNX15, a novel sorting nexin involved in protein trafficking. J. Biol. Chem.276, 5074–5084 (2001). CASPubMed Google Scholar
Barr, V. A., Phillips, S. A., Taylor, S. I. & Haft, C. R. Overexpression of a novel sorting nexin, SNX15, affects endosome morphology and protein trafficking. Traffic1, 904–916 (2000). CASPubMed Google Scholar
Komada, M. et al. Proteolytic processing of the hepatocyte growth factor/scatter factor receptor by furin. FEBS Lett.328, 25–29 (1993). CASPubMed Google Scholar
Ghosh, R. N., Mallet, W. G., Soe, T. T., McGraw, T. E. & Maxfield, F. R. An endocytosed TGN38 chimeric protein is delivered to the TGN after trafficking through the endocytic recycling compartment in CHO cells. J. Cell Biol.142, 923–936 (1998). CASPubMedPubMed Central Google Scholar
Mallet, W. G. & Maxfield, F. R. Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways. J. Cell Biol.146, 345–359 (1999). CASPubMedPubMed Central Google Scholar
Florian, V., Schluter, T. & Bohnensack, R. A new member of the sorting nexin family interacts with the C-terminus of P-selectin. Biochem. Biophys. Res. Commun.281, 1045–1050 (2001). CASPubMed Google Scholar
Straley, K. S. & Green, S. A. Rapid transport of internalized P-selectin to late endosomes and the TGN: roles in regulating cell surface expression and recycling to secretory granules. J. Cell Biol.151, 107–116 (2000). CASPubMedPubMed Central Google Scholar
Stockinger, W. et al. The PX-domain protein SNX17 interacts with members of the LDL receptor family and modulates endocytosis of the LDL receptor. EMBO J.21, 4259–4267 (2002). CASPubMedPubMed Central Google Scholar
Ago, T., Nunoi, H., Ito, T. & Sumimoto, H. Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47phox. Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47(phox), thereby activating the oxidase. J. Biol. Chem.274, 33644–33653 (1999). CASPubMed Google Scholar
Chanock, S. J., el Benna, J., Smith, R. M. & Babior, B. M. The respiratory burst oxidase. J. Biol. Chem.269, 24519–24522 (1994). CASPubMed Google Scholar
Noack, D. et al. Autosomal recessive chronic granulomatous disease caused by defects in NCF-1, the gene encoding the phagocyte p47-phox: mutations not arising in the NCF-1 pseudogenes. Blood97, 305–311 (2001). CASPubMed Google Scholar
Nothwehr, S. F., Ha, S. A. & Bruinsma, P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J. Cell. Biol.151, 297–310 (2000). CASPubMedPubMed Central Google Scholar
Seaman, M. N., Marcusson, E. G., Cereghino, J. L. & Emr, S. D. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J. Cell Biol.137, 79–92 (1997). CASPubMedPubMed Central Google Scholar
Nothwehr, S. F., Bruinsma, P. & Strawn, L. A. Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol. Biol. Cell10, 875–890 (1999). CASPubMedPubMed Central Google Scholar
Reddy, J. V. & Seaman, M. N. Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol. Biol. Cell12, 3242–3256 (2001). CASPubMedPubMed Central Google Scholar
Seaman, M. N. & Williams, H. P. Identification of the functional domains of yeast sorting nexins vps5p and vps17p. Mol. Biol. Cell13, 2826–2840 (2002). CASPubMedPubMed Central Google Scholar
Felsenstein, J. An alternating least squares approach to inferring phylogenies from pairwise distances. Syst. Biol.46, 101–111 (1997). CASPubMed Google Scholar
Carson, M. Ribbons 2.0. J. Appl. Cryst.24, 958–961 (1991). Google Scholar
Wang, Y., Zhou, Y., Szabo, K., Haft, C. R. & Trejo, J. Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol. Biol. Cell13, 1965–1976 (2002). CASPubMedPubMed Central Google Scholar