Oxidative stress, protein damage and repair in bacteria (original) (raw)
Imlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol.11, 443–454 (2013). This paper provides a detailed review of oxidative stress in bacteria. ArticleCASPubMedPubMed Central Google Scholar
Flannagan, R. S., Heit, B. & Heinrichs, D. E. Antimicrobial mechanisms of macrophages and the immune evasion strategies of Staphylococcus aureus. Pathogens4, 826–868 (2015). ArticleCASPubMedPubMed Central Google Scholar
Winterbourn, C. C. & Kettle, A. J. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid. Redox Signal.18, 642–660 (2013). ArticleCASPubMed Google Scholar
Traore, D. A. et al. Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein. Nat. Chem. Biol.5, 53–59 (2009). ArticleCASPubMed Google Scholar
Thurlkill, R. L., Grimsley, G. R., Scholtz, J. M. & Pace, C. N. p_K_ values of the ionizable groups of proteins. Protein Sci.15, 1214–1218 (2006). ArticleCASPubMedPubMed Central Google Scholar
Winterbourn, C. C. & Hampton, M. B. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med.45, 549–561 (2008). ArticleCASPubMed Google Scholar
Nagy, P. Kinetics and mechanisms of thiol–disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid. Redox Signal.18, 1623–1641 (2013). ArticleCASPubMedPubMed Central Google Scholar
Paulsen, C. E. & Carroll, K. S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev.113, 4633–4679 (2013). ArticleCASPubMedPubMed Central Google Scholar
Roos, G. & Messens, J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic. Biol. Med.51, 314–326 (2011). ArticleCASPubMed Google Scholar
Davies, M. J. The oxidative environment and protein damage. Biochim. Biophys. Acta1703, 93–109 (2005). ArticleCASPubMed Google Scholar
Lavine, T. F. The formation, resolution, and optical properties of the diastereoisomeric sulfoxides derived from L-methionine. J. Biol. Chem.169, 477–491 (1947). CASPubMed Google Scholar
Lee, B. C. & Gladyshev, V. N. The biological significance of methionine sulfoxide stereochemistry. Free Radic. Biol. Med.50, 221–227 (2011). ArticleCASPubMed Google Scholar
Vogt, W. Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic. Biol. Med.18, 93–105 (1995). ArticleCASPubMed Google Scholar
Schoneich, C. Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer's disease. Biochim. Biophys. Acta1703, 111–119 (2005). ArticleCASPubMed Google Scholar
Buxton, G. V., Greenstock, C. L., Helman, W. P. & Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data17, 513–886 (1988). ArticleCAS Google Scholar
Pattison, D. I. & Davies, M. J. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol.14, 1453–1464 (2001). ArticleCASPubMed Google Scholar
Padmaja, S., Squadrito, G. L., Lemercier, J. N., Cueto, R. & Pryor, W. A. Rapid oxidation of DL-selenomethionine by peroxynitrite. Free Radic. Biol. Med.21, 317–322 (1996). ArticleCASPubMed Google Scholar
Collet, J. F. & Messens, J. Structure, function, and mechanism of thioredoxin proteins. Antioxid. Redox Signal.13, 1205–1216 (2010). ArticleCASPubMed Google Scholar
Arts, I. S., Vertommen, D., Baldin, F., Laloux, G. & Collet, J. F. Comprehensively characterizing the thioredoxin interactome in vivo highlights the central role played by this ubiquitous oxidoreductase in redox control. Mol. Cell. Proteomics15, 2125–2140 (2016). ArticleCASPubMedPubMed Central Google Scholar
Collet, J. F., D'Souza, J. C., Jakob, U. & Bardwell, J. C. Thioredoxin 2, an oxidative stress-induced protein, contains a high affinity zinc binding site. J. Biol. Chem.278, 45325–45332 (2003). ArticleCASPubMed Google Scholar
Ritz, D. et al. Thioredoxin 2 is involved in the oxidative stress response in Escherichia coli. J. Biol. Chem.275, 2505–2512 (2000). ArticleCASPubMed Google Scholar
Storz, G., Tartaglia, L. A. & Ames, B. N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science248, 189–194 (1990). This study reports the activation of OxyR, a transcription factor that controls an oxidative stress response, through the direct oxidation of a cysteine residue, which shows that oxidation is not always detrimental. ArticleCASPubMed Google Scholar
Ritz, D. & Beckwith, J. Roles of thiol-redox pathways in bacteria. Annu. Rev. Microbiol.55, 21–48 (2001). ArticleCASPubMed Google Scholar
Fernandes, A. P. & Holmgren, A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid. Redox Signal.6, 63–74 (2004). ArticleCASPubMed Google Scholar
Vlamis-Gardikas, A. The multiple functions of the thiol-based electron flow pathways of Escherichia coli: eternal concepts revisited. Biochim. Biophys. Acta1780, 1170–1200 (2008). ArticleCASPubMed Google Scholar
Iwema, T. et al. Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin. Biochemistry48, 6041–6043 (2009). ArticleCASPubMed Google Scholar
Delaye, L., Becerra, A., Orgel, L. & Lazcano, A. Molecular evolution of peptide methionine sulfoxide reductases (MsrA and MsrB): on the early development of a mechanism that protects against oxidative damage. J. Mol. Evol.64, 15–32 (2007). ArticleCASPubMed Google Scholar
Brot, N., Weissbach, L., Werth, J. & Weissbach, H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc. Natl Acad. Sci. USA78, 2155–2158 (1981). This work reports, for the first time, the ability of an Msr enzyme to reduce a methionine sulfoxide in a protein. ArticleCASPubMedPubMed Central Google Scholar
Rahman, M. A., Nelson, H., Weissbach, H. & Brot, N. Cloning, sequencing, and expression of the Escherichia coli peptide methionine sulfoxide reductase gene. J. Biol. Chem.267, 15549–15551 (1992). CASPubMed Google Scholar
Grimaud, R. et al. Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J. Biol. Chem.276, 48915–48920 (2001). This study reports the identification of MsrB. ArticleCASPubMed Google Scholar
Lin, Z. et al. Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc. Natl Acad. Sci. USA104, 9597–9602 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ezraty, B., Bos, J., Barras, F. & Aussel, L. Methionine sulfoxide reduction and assimilation in Escherichia coli: new role for the biotin sulfoxide reductase BisC. J. Bacteriol.187, 231–237 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kryukov, G. V., Kumar, R. A., Koc, A., Sun, Z. & Gladyshev, V. N. Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc. Natl Acad. Sci. USA99, 4245–4250 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sharov, V. S., Ferrington, D. A., Squier, T. C. & Schoneich, C. Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase. FEBS Lett.455, 247–250 (1999). ArticleCASPubMed Google Scholar
Moskovitz, J. et al. Identification and characterization of a putative active site for peptide methionine sulfoxide reductase (MsrA) and its substrate stereospecificity. J. Biol. Chem.275, 14167–14172 (2000). ArticleCASPubMed Google Scholar
Boschi-Muller, S., Olry, A., Antoine, M. & Branlant, G. The enzymology and biochemistry of methionine sulfoxide reductases. Biochim. Biophys. Acta1703, 231–238 (2005). ArticleCASPubMed Google Scholar
Boschi-Muller, S., Azza, S. & Branlant, G. E. coli methionine sulfoxide reductase with a truncated N terminus or C terminus, or both, retains the ability to reduce methionine sulfoxide. Protein Sci.10, 2272–2279 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kumar, R. A., Koc, A., Cerny, R. L. & Gladyshev, V. N. Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-_R_-sulfoxide reductase. J. Biol. Chem.277, 37527–37535 (2002). ArticleCASPubMed Google Scholar
Kim, H. Y. & Gladyshev, V. N. Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-_R_-sulfoxide reductases. PLoS Biol.3, e375 (2005). ArticleCASPubMedPubMed Central Google Scholar
Russel, M. & Model, P. The role of thioredoxin in filamentous phage assembly. Construction, isolation, and characterization of mutant thioredoxins. J. Biol. Chem.261, 14997–15005 (1986). CASPubMed Google Scholar
Boschi-Muller, S. & Branlant, G. Methionine sulfoxide reductase: chemistry, substrate binding, recycling process and oxidase activity. Bioorg. Chem.57, 222–230 (2014). This review describes the chemistry of Msr enzymes. ArticleCASPubMed Google Scholar
Lee, T. H. & Kim, H. Y. An anaerobic bacterial MsrB model reveals catalytic mechanisms, advantages, and disadvantages provided by selenocysteine and cysteine in reduction of methionine-_R_-sulfoxide. Arch. Biochem. Biophys.478, 175–180 (2008). ArticleCASPubMed Google Scholar
Coudevylle, N. et al. Solution structure and backbone dynamics of the reduced form and an oxidized form of E. coli methionine sulfoxide reductase A (MsrA): structural insight of the MsrA catalytic cycle. J. Mol. Biol.366, 193–206 (2007). ArticleCASPubMed Google Scholar
Ranaivoson, F. M. et al. A structural analysis of the catalytic mechanism of methionine sulfoxide reductase A from Neisseria meningitidis. J. Mol. Biol.377, 268–280 (2008). ArticleCASPubMed Google Scholar
Ranaivoson, F. M. et al. Methionine sulfoxide reductase B displays a high level of flexibility. J. Mol. Biol.394, 83–93 (2009). ArticleCASPubMed Google Scholar
Lowther, W. T., Weissbach, H., Etienne, F., Brot, N. & Matthews, B. W. The mirrored methionine sulfoxide reductases of Neisseria gonorrhoeae pilB. Nat. Struct. Biol.9, 348–352 (2002). CASPubMed Google Scholar
Mahawar, M., Tran, V., Sharp, J. S. & Maier, R. J. Synergistic roles of Helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase. J. Biol. Chem.286, 19159–19169 (2011). ArticleCASPubMedPubMed Central Google Scholar
Benoit, S. L., Bayyareddy, K., Mahawar, M., Sharp, J. S. & Maier, R. J. Alkyl hydroperoxide reductase repair by Helicobacter pylori methionine sulfoxide reductase. J. Bacteriol.195, 5396–5401 (2013). ArticleCASPubMedPubMed Central Google Scholar
Khor, H. K., Fisher, M. T. & Schoneich, C. Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO-). J. Biol. Chem.279, 19486–19493 (2004). ArticleCASPubMed Google Scholar
Abulimiti, A., Qiu, X., Chen, J., Liu, Y. & Chang, Z. Reversible methionine sulfoxidation of Mycobacterium tuberculosis small heat shock protein Hsp16.3 and its possible role in scavenging oxidants. Biochem. Biophys. Res. Commun.305, 87–93 (2003). ArticleCASPubMed Google Scholar
Levine, R. L., Mosoni, L., Berlett, B. S. & Stadtman, E. R. Methionine residues as endogenous antioxidants in proteins. Proc. Natl Acad. Sci. USA93, 15036–15040 (1996). This study proposes a theory in which methionine residues act as a shield against ROS. ArticleCASPubMedPubMed Central Google Scholar
Ezraty, B., Grimaud, R., El Hassouni, M., Moinier, D. & Barras, F. Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. EMBO J.23, 1868–1877 (2004). This study reports the identification of the SRP54 homologue in bacteria as a target of the MsrAB system through the use of both biochemical and physiological approaches. ArticleCASPubMedPubMed Central Google Scholar
Luirink, J. et al. An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J.13, 2289–2296 (1994). ArticleCASPubMedPubMed Central Google Scholar
Ulbrandt, N. D., Newitt, J. A. & Bernstein, H. D. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell88, 187–196 (1997). ArticleCASPubMed Google Scholar
Leverrier, P., Vertommen, D. & Collet, J. F. Contribution of proteomics toward solving the fascinating mysteries of the biogenesis of the envelope of Escherichia coli. Proteomics10, 771–784 (2010). ArticleCASPubMed Google Scholar
Depuydt, M., Messens, J. & Collet, J. F. How proteins form disulfide bonds. Antioxid. Redox Signal.15, 49–66 (2011). ArticleCASPubMed Google Scholar
Bardwell, J. C., McGovern, K. & Beckwith, J. Identification of a protein required for disulfide bond formation in vivo. Cell67, 581–589 (1991). This study describes the identification of DsbA, a protein that catalyses the formation of disulfide bonds in the periplasm. ArticleCASPubMed Google Scholar
Bader, M., Muse, W., Ballou, D. P., Gassner, C. & Bardwell, J. C. Oxidative protein folding is driven by the electron transport system. Cell98, 217–227 (1999). ArticleCASPubMed Google Scholar
Kadokura, H. & Beckwith, J. Detecting folding intermediates of a protein as it passes through the bacterial translocation channel. Cell138, 1164–1173 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shevchik, V. E., Condemine, G. & Robert-Baudouy, J. Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity. EMBO J.13, 2007–2012 (1994). ArticleCASPubMedPubMed Central Google Scholar
Dutton, R. J., Boyd, D., Berkmen, M. & Beckwith, J. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl Acad. Sci. USA105, 11933–11938 (2008). This study reveals that there is a bias for an even number of cysteine residues in proteins that are expressed in compartments in which the formation of disulfide bonds occurs. As such, counting the number of cysteine residues can be used to predict whether the formation of disulfide bonds occurs in a specific cellular compartment. ArticleCASPubMedPubMed Central Google Scholar
Depuydt, M. et al. A periplasmic reducing system protects single cysteine residues from oxidation. Science326, 1109–1111 (2009). This paper reports the function of DsbG in the protection of single cysteine residues from oxidation in the periplasm. ArticleCASPubMed Google Scholar
Mainardi, J. L. et al. Unexpected inhibition of peptidoglycan ld-transpeptidase from Enterococcus faecium by the β-lactam imipenem. J. Biol. Chem.282, 30414–30422 (2007). ArticleCASPubMed Google Scholar
Denoncin, K. et al. A new role for Escherichia coli DsbC protein in protection against oxidative stress. J. Biol. Chem.289, 12356–12364 (2014). ArticleCASPubMedPubMed Central Google Scholar
Arts, I. S., Gennaris, A. & Collet, J. F. Reducing systems protecting the bacterial cell envelope from oxidative damage. FEBS Lett.589, 1559–1568 (2015). ArticleCASPubMed Google Scholar
Rietsch, A., Bessette, P., Georgiou, G. & Beckwith, J. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J. Bacteriol.179, 6602–6608 (1997). ArticleCASPubMedPubMed Central Google Scholar
Rietsch, A., Belin, D., Martin, N. & Beckwith, J. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc. Natl Acad. Sci. USA93, 13048–13053 (1996). ArticleCASPubMedPubMed Central Google Scholar
Katzen, F. & Beckwith, J. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell103, 769–779 (2000). ArticleCASPubMed Google Scholar
Williamson, J. A. et al. Structure and multistate function of the transmembrane electron transporter CcdA. Nat. Struct. Mol. Biol.22, 809–814 (2015). ArticleCASPubMedPubMed Central Google Scholar
Skaar, E. P. et al. The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc. Natl Acad. Sci. USA99, 10108–10113 (2002). ArticleCASPubMedPubMed Central Google Scholar
Olry, A. et al. Characterization of the methionine sulfoxide reductase activities of PilB, a probable virulence factor from Neisseria meningitidis. J. Biol. Chem.277, 12016–12022 (2002). ArticleCASPubMed Google Scholar
Brot, N. et al. The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases. J. Biol. Chem.281, 32668–32675 (2006). ArticleCASPubMed Google Scholar
Saleh, M. et al. Molecular architecture of Streptococcus pneumoniae surface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence. EMBO Mol. Med.5, 1852–1870 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gennaris, A. et al. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. Nature528, 409–412 (2015). This study describes the identification of MsrPQ, which is a widely conserved enzymatic system that protects methionine residues from oxidation in the periplasm. ArticleCASPubMedPubMed Central Google Scholar
Brokx, S. J., Rothery, R. A., Zhang, G., Ng, D. P. & Weiner, J. H. Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function. Biochemistry44, 10339–10348 (2005). ArticleCASPubMed Google Scholar
Juillan-Binard, C. et al. A two-component NADPH oxidase (NOX)-like system in bacteria is involved in the electron transfer chain to the methionine sulfoxide reductase MsrP. J. Biol. Chem.292, 2485–2494 (2017). ArticleCASPubMed Google Scholar
Loschi, L. et al. Structural and biochemical identification of a novel bacterial oxidoreductase. J. Biol. Chem.279, 50391–50400 (2004). ArticleCASPubMed Google Scholar
Melnyk, R. A. et al. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase. mBio6, e00233–15 (2015). ArticleCASPubMedPubMed Central Google Scholar
Vlamis-Gardikas, A., Potamitou, A., Zarivach, R., Hochman, A. & Holmgren, A. Characterization of Escherichia coli null mutants for glutaredoxin 2. J. Biol. Chem.277, 10861–10868 (2002). ArticleCASPubMed Google Scholar
Kosower, N. S., Kosower, E. M., Wertheim, B. & Correa, W. S. Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide. Biochem. Biophys. Res. Commun.37, 593–596 (1969). ArticleCASPubMed Google Scholar
Lin, K. et al. Mycobacterium tuberculosis thioredoxin reductase is essential for thiol redox homeostasis but plays a minor role in antioxidant defense. PLoS Pathog.12, e1005675 (2016). ArticleCASPubMedPubMed Central Google Scholar
Uziel, O., Borovok, I., Schreiber, R., Cohen, G. & Aharonowitz, Y. Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J. Bacteriol.186, 326–334 (2004). ArticleCASPubMedPubMed Central Google Scholar
Marteyn, B., Domain, F., Legrain, P., Chauvat, F. & Cassier-Chauvat, C. The thioredoxin reductase–glutaredoxins–ferredoxin crossroad pathway for selenate tolerance in Synechocystis PCC6803. Mol. Microbiol.71, 520–532 (2009). ArticleCASPubMed Google Scholar
Pasternak, C., Assemat, K., Clement-Metral, J. D. & Klug, G. Thioredoxin is essential for Rhodobacter sphaeroides growth by aerobic and anaerobic respiration. Microbiology143, 83–91 (1997). ArticleCASPubMed Google Scholar
Scharf, C. et al. Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J. Bacteriol.180, 1869–1877 (1998). CASPubMedPubMed Central Google Scholar
Navarro, F. & Florencio, F. J. The cyanobacterial thioredoxin gene is required for both photoautotrophic and heterotrophic growth. Plant Physiol.111, 1067–1075 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kuhns, L. G., Wang, G. & Maier, R. J. Comparative roles of the two Helicobacter pylori thioredoxins in preventing macromolecule damage. Infect. Immun.83, 2935–2943 (2015). ArticleCASPubMedPubMed Central Google Scholar
Potter, A. J. et al. Thioredoxin reductase is essential for protection of Neisseria gonorrhoeae against killing by nitric oxide and for bacterial growth during interaction with cervical epithelial cells. J. Infect. Dis.199, 227–235 (2009). ArticleCASPubMed Google Scholar
Kraemer, P. S. et al. Genome-wide screen in Francisella novicida for genes required for pulmonary and systemic infection in mice. Infect. Immun.77, 232–244 (2009). ArticleCASPubMed Google Scholar
Rocha, E. R., Tzianabos, A. O. & Smith, C. J. Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis. J. Bacteriol.189, 8015–8023 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ortenberg, R., Gon, S., Porat, A. & Beckwith, J. Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli. Proc. Natl Acad. Sci. USA101, 7439–7444 (2004). ArticleCASPubMedPubMed Central Google Scholar
Russel, M., Model, P. & Holmgren, A. Thioredoxin or glutaredoxin in Escherichia coli is essential for sulfate reduction but not for deoxyribonucleotide synthesis. J. Bacteriol.172, 1923–1929 (1990). ArticleCASPubMedPubMed Central Google Scholar
Toledano, M. B., Kumar, C., Le Moan, N., Spector, D. & Tacnet, F. The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett.581, 3598–3607 (2007). ArticleCASPubMed Google Scholar
Crooke, H. & Cole, J. The biogenesis of _c_-type cytochromes in Escherichia coli requires a membrane-bound protein, DipZ, with a protein disulphide isomerase-like domain. Mol. Microbiol.15, 1139–1150 (1995). ArticleCASPubMed Google Scholar
Mavridou, D. A., Ferguson, S. J. & Stevens, J. M. The interplay between the disulfide bond formation pathway and cytochrome c maturation in Escherichia coli. FEBS Lett.586, 1702–1707 (2012). ArticleCASPubMedPubMed Central Google Scholar
Metheringham, R. et al. Effects of mutations in genes for proteins involved in disulphide bond formation in the periplasm on the activities of anaerobically induced electron transfer chains in Escherichia coli K12. Mol. Gen. Genet.253, 95–102 (1996). CASPubMed Google Scholar
Beckett, C. S. et al. Four genes are required for the system II cytochrome c biogenesis pathway in Bordetella pertussis, a unique bacterial model. Mol. Microbiol.38, 465–481 (2000). ArticleCASPubMed Google Scholar
Liu, Y. W. & Kelly, D. J. Cytochrome c biogenesis in Campylobacter jejuni requires cytochrome c6 (CccA; Cj1153) to maintain apocytochrome cysteine thiols in a reduced state for haem attachment. Mol. Microbiol.96, 1298–1317 (2015). ArticleCASPubMed Google Scholar
Braun, M. & Thony-Meyer, L. Cytochrome c maturation and the physiological role of _c_-type cytochromes in Vibrio cholerae. J. Bacteriol.187, 5996–6004 (2005). ArticleCASPubMedPubMed Central Google Scholar
Page, M. D., Saunders, N. F. & Ferguson, S. J. Disruption of the Pseudomonas aeruginosa dipZ gene, encoding a putative protein-disulfide reductase, leads to partial pleiotropic deficiency in _c_-type cytochrome biogenesis. Microbiology143, 3111–3122 (1997). ArticleCASPubMed Google Scholar
Hiniker, A., Collet, J. F. & Bardwell, J. C. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J. Biol. Chem.280, 33785–33791 (2005). ArticleCASPubMed Google Scholar
Missiakas, D., Schwager, F. & Raina, S. Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. EMBO J.14, 3415–3424 (1995). ArticleCASPubMedPubMed Central Google Scholar
Leverrier, P. et al. Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J. Biol. Chem.286, 16734–16742 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kumar, P., Sannigrahi, S., Scoullar, J., Kahler, C. M. & Tzeng, Y. L. Characterization of DsbD in Neisseria meningitidis. Mol. Microbiol.79, 1557–1573 (2011). ArticleCASPubMedPubMed Central Google Scholar
Vertommen, D. et al. The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner. Mol. Microbiol.67, 336–349 (2008). CASPubMed Google Scholar
Denoncin, K., Vertommen, D., Paek, E. & Collet, J. F. The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential β-barrel protein LptD. J. Biol. Chem.285, 29425–29433 (2010). ArticleCASPubMedPubMed Central Google Scholar
Missiakas, D., Georgopoulos, C. & Raina, S. The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J.13, 2013–2020 (1994). ArticleCASPubMedPubMed Central Google Scholar
An, R., Sreevatsan, S. & Grewal, P. S. Moraxella osloensis gene expression in the slug host Deroceras reticulatum. BMC Microbiol.8, 19 (2008). ArticleCASPubMedPubMed Central Google Scholar
Guo, W. et al. Identification of seven Xanthomonas oryzae pv. oryzicola genes potentially involved in pathogenesis in rice. Microbiology158, 505–518 (2012). ArticleCASPubMed Google Scholar
Vincent-Sealy, L. V., Thomas, J. D., Commander, P. & Salmond, G. P. Erwinia carotovora DsbA mutants: evidence for a periplasmic-stress signal transduction system affecting transcription of genes encoding secreted proteins. Microbiology145, 1945–1958 (1999). ArticleCASPubMed Google Scholar
Zhao, C. et al. Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect. Immun.78, 3889–3897 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dhandayuthapani, S., Blaylock, M. W., Bebear, C. M., Rasmussen, W. G. & Baseman, J. B. Peptide methionine sulfoxide reductase (MsrA) is a virulence determinant in Mycoplasma genitalium. J. Bacteriol.183, 5645–5650 (2001). ArticleCASPubMedPubMed Central Google Scholar
Vattanaviboon, P., Seeanukun, C., Whangsuk, W., Utamapongchai, S. & Mongkolsuk, S. Important role for methionine sulfoxide reductase in the oxidative stress response of Xanthomonas campestris pv. phaseoli. J. Bacteriol.187, 5831–5836 (2005). ArticleCASPubMedPubMed Central Google Scholar
Moskovitz, J. et al. Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J. Bacteriol.177, 502–507 (1995). ArticleCASPubMedPubMed Central Google Scholar
Romsang, A., Atichartpongkul, S., Trinachartvanit, W., Vattanaviboon, P. & Mongkolsuk, S. Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. J. Bacteriol.195, 3299–3308 (2013). ArticleCASPubMedPubMed Central Google Scholar
Trivedi, R. N. et al. Methionine sulfoxide reductase A (MsrA) contributes to Salmonella Typhimurium survival against oxidative attack of neutrophils. Immunobiology220, 1322–1327 (2015). ArticleCASPubMed Google Scholar
Dhandayuthapani, S., Jagannath, C., Nino, C., Saikolappan, S. & Sasindran, S. J. Methionine sulfoxide reductase B (MsrB) of Mycobacterium smegmatis plays a limited role in resisting oxidative stress. Tuberculosis (Edinb.)89 (Suppl. 1), S26–S32 (2009). Article Google Scholar
Atack, J. M. & Kelly, D. J. Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni. Microbiology154, 2219–2230 (2008). ArticleCASPubMed Google Scholar
Lee, W. L. et al. Mycobacterium tuberculosis expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite. Mol. Microbiol.71, 583–593 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pericone, C. D., Overweg, K., Hermans, P. W. & Weiser, J. N. Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect. Immun.68, 3990–3997 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hassouni, M. E., Chambost, J. P., Expert, D., Van Gijsegem, F. & Barras, F. The minimal gene set member msrA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi. Proc. Natl Acad. Sci. USA96, 887–892 (1999). ArticleCASPubMedPubMed Central Google Scholar
Das, K., De la Garza, G., Maffi, S., Saikolappan, S. & Dhandayuthapani, S. Methionine sulfoxide reductase A (MsrA) deficient Mycoplasma genitalium shows decreased interactions with host cells. PLoS ONE7, e36247 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wizemann, T. M. et al. Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens. Proc. Natl Acad. Sci. USA93, 7985–7990 (1996). ArticleCASPubMedPubMed Central Google Scholar
Alamuri, P. & Maier, R. J. Methionine sulphoxide reductase is an important antioxidant enzyme in the gastric pathogen Helicobacter pylori. Mol. Microbiol.53, 1397–1406 (2004). ArticleCASPubMed Google Scholar
Beloin, C. et al. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol. Microbiol.51, 659–674 (2004). ArticleCASPubMed Google Scholar
Hitchcock, A. et al. Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni. Microbiology156, 2994–3010 (2010). ArticleCASPubMed Google Scholar
Chiarugi, P. & Cirri, P. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem. Sci.28, 509–514 (2003). ArticleCASPubMed Google Scholar
Tanner, J. J., Parsons, Z. D., Cummings, A. H., Zhou, H. & Gates, K. S. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Antioxid. Redox Signal.15, 77–97 (2011). ArticleCASPubMed Google Scholar
Rhee, S. G. Cell signaling. H2O2, a necessary evil for cell signaling. Science312, 1882–1883 (2006). ArticlePubMed Google Scholar
Mongkolsuk, S. & Helmann, J. D. Regulation of inducible peroxide stress responses. Mol. Microbiol.45, 9–15 (2002). ArticleCASPubMed Google Scholar
Choi, H. et al. Structural basis of the redox switch in the OxyR transcription factor. Cell105, 103–113 (2001). ArticleCASPubMed Google Scholar
Zheng, M., Aslund, F. & Storz, G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science279, 1718–1721 (1998). ArticleCASPubMed Google Scholar
Gebendorfer, K. M. et al. Identification of a hypochlorite-specific transcription factor from Escherichia coli. J. Biol. Chem.287, 6892–6903 (2012). ArticleCASPubMedPubMed Central Google Scholar
Drazic, A. et al. Methionine oxidation activates a transcription factor in response to oxidative stress. Proc. Natl Acad. Sci. USA110, 9493–9498 (2013). This study reports the first example of the activation of a regulatory protein through methionine oxidation. ArticleCASPubMedPubMed Central Google Scholar
Drazic, A. et al. Tetramers are the activation-competent species of the HOCl-specific transcription factor HypT. J. Biol. Chem.289, 977–986 (2014). ArticleCASPubMed Google Scholar