Tularaemia: bioterrorism defence renews interest in Francisella tularensis (original) (raw)
Harris, S. Japanese biological warfare research on humans: a case study of microbiology and ethics. Ann. NY Acad. Sci.666, 21–52 (1992). ArticleCASPubMed Google Scholar
Dennis, D. T. et al. Tularemia as a biological weapon — medical and public health management. JAMA285, 2763–2773 (2001). ArticleCASPubMed Google Scholar
Alibek, K. Biohazard (Random House, New York, 1999). Google Scholar
World Health Organization. Health Aspects of Chemical and Biological Weapons (WHO, Geneva, 1970).
Riley, R. L. Aerial dissemination of pulmonary tuberculosis. Am. Rev. Tuberc.76, 931–941 (1957). CASPubMed Google Scholar
Titball, R. W. & Sjostedt, A. Francisella tularensis: an overview. ASM News69, 558 (2003). Google Scholar
Titball, R. W., Johansson, A. & Forsman, M. Will the enigma of Francisella tularensis virulence soon be solved? Trends Microbiol.11, 118–123 (2003). ArticleCASPubMed Google Scholar
Dorofe'ev, K. A. Classification of the causative agent of tularemia. Symp. Res. Works Inst. Epidemiol. Mikrobiol. Chita.1, 170–180 (1947). Google Scholar
Broekhuijsen, M. et al. Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp tularensis. J. Clin. Microbiol.41, 2924–2931 (2003). First (and so far only) comparative genomics publication onF. tularensis. ArticleCASPubMedPubMed Central Google Scholar
Thomas, R. et al. Discrimination of human pathogenic subspecies of Francisella tularensis by using restriction fragment length polymorphism. J. Clin. Microbiol.41, 50–57 (2003). ArticleCASPubMedPubMed Central Google Scholar
Prior, R. G. et al. Preliminary analysis and annotation of the partial genome sequence of Francisella tularensis strain Schu 4. J. Appl. Microbiol.91, 614–620 (2001). ArticleCASPubMed Google Scholar
Tärnvik, A., Sandström, G. & Sjöstedt, A. Epidemiological analysis of tularemia in Sweden 1931–1993. FEMS Immunol. Med. Microbiol.13, 201–204 (1996). ArticlePubMed Google Scholar
Helvaci, S., Gedikoglu, S., Akalin, H. & Oral, H. B. Tularemia in Bursa, Turkey: 205 cases in ten years. Eur. J. Epidemiol.16, 271–276 (2000). ArticleCASPubMed Google Scholar
Berdal, B. P. et al. Field detection of Francisella tularensis. Scand. J. Infect. Dis.32, 287–291 (2000). ArticleCASPubMed Google Scholar
de Tuesta, A. M. D. et al. An epidemic outbreak of tularemia in the province of Cuenca linked with crab-fish handling. Rev. Clin. Esp.201, 385–389 (2001). Article Google Scholar
Abd, H., Johansson, T., Golovliov, I., Sandstrom, G. & Forsman, M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol.69, 600–606 (2003). First demonstration of the ability ofF. tularensisto grow in amoebae. ArticleCASPubMedPubMed Central Google Scholar
Lauriano, C. M. et al. MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc. Natl Acad. Sci. USA101, 4246–4249 (2004). Showed a connection between the virulence mechanisms required forF. tularensissurvival in eukaryotic cells and amoebae. ArticleCASPubMed Google Scholar
Whipp, M. J. et al. Characterization of a _novicida_-like subspecies of Francisella tularensis isolated in Australia. J. Med. Microbiol.52, 839–842 (2003). First isolation ofFrancisellain Australia, indicating that the geographical range of the organism might be much larger than previously indicated. ArticlePubMed Google Scholar
Hopla, C. E. The ecology of tularemia. Adv. Vet. Sci. Comp. Med.18, 25–53 (1974). CASPubMed Google Scholar
Sjöstedt, A. in Bergey's Manual of Systematic Bacteriology. (ed. Brenner, D. J.) (Springer, 2004). Google Scholar
Olsufev, N. G. Results and perspectives of the study of natural foci of tularemia in USSR. Med. Parazitol. (Mosk)46, 273–82 (1977) (in Russian). CAS Google Scholar
Quijada, S. G. et al. Tularemia: study of 27 patients. Med. Clin.119, 455–457 (2002). Article Google Scholar
Eliasson, H. et al. The 2000 tularemia outbreak: a case-control study of risk factors in disease-endemic and emergent areas, Sweden. Emerg. Infect. Dis.8, 956–960 (2002). ArticlePubMedPubMed Central Google Scholar
Olin, G. Occurrence and mode of transmission of tularemia in Sweden. Acta Microbiol. Scand.19, 220–247 (1942). Article Google Scholar
Hubalek, Z. & Halouzka, J. Mosquitoes (Diptera: Culicidae), in contrast to ticks (Acari: Ixodidae), do not carry Francisella tularensis in a natural focus of tularemia in the Czech Republic. J. Med. Entomol.34, 660–663 (1997). ArticleCASPubMed Google Scholar
Olsufiev, N. G. in Human Diseases With Natural Foci (ed. Pavlovsky, Y. N.) 219–281 (Foreign Languages Publishing House, Moscow, 1966). Google Scholar
Boyce, J. M. Recent trends in the epidemiology of tularemia in the United States. J. Infect. Dis.131, 197–199 (1975). ArticleCASPubMed Google Scholar
Christenson, B. An outbreak of tularemia in the northern part of central Sweden. Scand. J. Infect. Dis.16, 285–290 (1984). ArticleCASPubMed Google Scholar
Evans, M. E., Gregory, D. W., Schaffner, W. & McGee, Z. A. Tularemia: a 30-year experience with 88 cases. Medicine (Baltimore)64, 251–269 (1985). ArticleCAS Google Scholar
Kavanaugh, C. N. Tularemia. A consideration of one hundred and twenty-three cases, with observations at autopsy in one. Arch. Intern. Med.55, 61–85 (1935). Article Google Scholar
Dahlstrand, S., Ringertz, O. & Zetterberg, B. Airborne tularemia in Sweden. Scand. J. Infect. Dis.3, 7–16 (1971). ArticleCASPubMed Google Scholar
Dienst, J., F. T. Tularemia — a perusal of three hundred thirty-nine cases. J. La State Med. Soc.115, 114–127 (1963). PubMed Google Scholar
Anthony, L. S. D., Burke, R. D. & Nano, F. E. Growth of Francisella spp. in rodent macrophages. Infect. Immun.59, 3291–3296 (1991). CASPubMedPubMed Central Google Scholar
Lofgren, S., Tarnvik, A., Bloom, G. D. & Sjoberg, W. Phagocytosis and killing of Francisella tularensis by human polymorphonuclear leukocytes. Infect. Immun.39, 715–720 (1983). CASPubMedPubMed Central Google Scholar
Lofgren, S., Tarnvik, A., Thore, M. & Carlsson, J. A wild and an attenuated strain of Francisella tularensis differ in susceptibility to hypochlorous acid — a possible explanation of their different handling by polymorphonuclear leukocytes. Infect. Immun.43, 730–734 (1984). CASPubMedPubMed Central Google Scholar
Fortier, A. H. et al. Life and death of an intracellular pathogen: Francisella tularensis and the macrophage. Immunol. Serol. 349–361 (1994).
Reilly, T. J., Baron, G. S., Nano, F. E. & Kuhlenschmidt, M. S. Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella tularensis. J. Biol. Chem.271, 10973–10983 (1996). ArticleCASPubMed Google Scholar
Baron, G. S., Reilly, T. J. & Nano, F. E. The respiratory burst-inhibiting acid phosphatase AcpA is not essential for the intramacrophage growth or virulence of Francisella novicida. FEMS Microbiol. Lett.176, 85–90 (1999). ArticleCASPubMed Google Scholar
Fortier, A. H. et al. Growth of Francisella tularensis LVS in macrophages: the acidic intracellular compartment provides essential iron required for growth. Infect. Immun.63, 1478–1483 (1995). CASPubMedPubMed Central Google Scholar
Ley, V., Robbins, E. S., Nussenzweig, V. & Andrews, N. W. The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments. J. Exp. Med.171, 401–413 (1990). ArticleCASPubMed Google Scholar
Clemens, D. L., Lee, B. -Y. & Horowitz, M. A. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect. Immun.72, 3204–3217 (2004). Added greatly to the understanding of the intracellular events during infection. ArticleCASPubMedPubMed Central Google Scholar
Fortier, A. H., Polsinelli, T., Green, S. J. & Nacy, C. A. Activation of macrophages for destruction of Francisella tularensis: identification of cytokines, effector cells and effector molecules. Infect. Immun.60, 817–825 (1992). CASPubMedPubMed Central Google Scholar
Polsinelli, T., Meltzer, M. S. & Fortier, A. H. Nitric oxide-independent killing of Francisella tularensis by IFN-γ-stimulated murine alveolar macrophages. J. Immunol.153, 1238–1245 (1994). CASPubMed Google Scholar
Anthony, L. S. D., Morrissey, P. J. & Nano, F. E. Growth inhibition of Francisella tularensis live vaccine strain by IFNγ-activated macrophages is mediated by reactive nitrogen intermediates derived from L-arginine metabolism. J. Immunol.148, 1829–1834 (1992). CASPubMed Google Scholar
Elkins, K. L., Cowley, S. C. & Bosio, C. M. Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain. Microbes Infect.5, 135–142 (2003). ArticleCASPubMed Google Scholar
Golovliov, I., Baranov, V., Krocova, Z., Kovarova, H. & Sjostedt, A. An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect. Immun.71, 5940–5950 (2003). Provided a novel view of the intracellular survival strategy ofF. tularensis. ArticleCASPubMedPubMed Central Google Scholar
Berger, K. H. & Isberg, R. R. 2 distinct defects in intracellular growth complemented by a single genetic-locus in Legionella pneumophila. Mol. Microbiol.7, 7–19 (1993). ArticleCASPubMed Google Scholar
Zamboni, D. S., McGrath, S., Rabinovitch, M. & Roy, C. R. Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol. Microbiol.49, 965–976 (2003). ArticleCASPubMed Google Scholar
Zusman, T., Yerushalmi, G. & Segal, G. Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect. Immun.71, 3714–3723 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lai, X. H., Golovliov, I. & Sjostedt, A. Francisella tularensis induces cytopathogenicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication. Infect. Immun.69, 4691–4694 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lai, X. H. & Sjostedt, A. Delineation of the molecular mechanisms of _Francisella tularensis_-induced apoptosis in murine macrophages. Infect. Immun.71, 4642–4646 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gao, L. Y. & Kwaik, Y. A. The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol.8, 306–313 (2000). ArticleCASPubMed Google Scholar
Abd, H., Johansson, T., Golovliov, I., Sandstrom, G. & Forsman, M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol.69, 600–606 (2003). ArticleCASPubMedPubMed Central Google Scholar
Forestal, C. A. et al. Francisella tularensis selectively induces proinflammatory changes in endothelial cells. J. Immunol.171, 2563–2570 (2003). ArticleCASPubMed Google Scholar
Golovliov, I., Ericsson, M., Sandstrom, G., Tarnvik, A. & Sjostedt, A. Identification of proteins of Francisella tularensis induced during growth in macrophages and cloning of the gene encoding a prominently induced 23-kilodalton protein. Infect. Immun.65, 2183–2189 (1997). CASPubMedPubMed Central Google Scholar
Telepnev, M., Golovliov, I., Grundstrom, T., Tarnvik, A. & Sjostedt, A. Francisella tularensis inhibits Toll-like receptor-mediated activation of intracellular signalling and secretion of TNF-α and IL-1 from murine macrophages. Cell. Microbiol.5, 41–51 (2003). ArticleCASPubMed Google Scholar
Gray, C. G., Cowley, S. C., Cheung, K. K. M. & Nano, F. E. The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol. Lett.215, 53–56 (2002). ArticleCASPubMed Google Scholar
Harb, O. S., Gao, L. Y. & Abu Kwaik, Y. From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ. Microbiol.2, 251–265 (2000). ArticleCASPubMed Google Scholar
Nano, F. E. et al. A Francisella tularensis pathogenicity island required for intramacrophage growth. J. Bacteriol.186, 6430–6436 (2004). ArticleCASPubMedPubMed Central Google Scholar
Anthony, L. S. D., Cowley, S. C., Mdluli, K. E. & Nano, F. E. Isolation of a Francisella tularensis mutant that is sensitive to serum and oxidative killing and is avirulent in mice: correlation with the loss of MinD homologue expression. FEMS Microbiol. Lett.124, 157–166 (1994). ArticleCASPubMed Google Scholar
Sandstrom, G., Lofgren, S. & Tarnvik, A. A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect. Immun.56, 1194–1202 (1988). CASPubMedPubMed Central Google Scholar
Sorokin, V. M., Pavlov, V. M. & Prozorova, L. A. Francisella tularensis resistance to bactericidal action of normal human serum. FEMS Immunol. Med. Microbiol.13, 249–252 (1996). ArticleCASPubMed Google Scholar
Prior, J. L. et al. Characterization of the O antigen gene cluster and structural analysis of the O antigen of Francisella tularensis subsp tularensis. J. Med. Microbiol.52, 845–851 (2003). ArticleCASPubMed Google Scholar
Vinogradov, E., Conlan, W. J., Gunn, J. S. & Perry, M. B. Characterization of the lipopolysaccharide O-antigen of Francisella novicida (U112). Carbohydr. Res.339, 649–654 (2004). ArticleCASPubMed Google Scholar
McDonald, M. K., Cowley, S. C. & Nano, F. E. Temperature-sensitive lesions in the Francisella novicida valA gene cloned into an Escherichia coli msbA lpxK mutant affecting deoxycholate resistance and lipopolysaccharide assembly at the restrictive temperature. J. Bacteriol.179, 7638–7643 (1997). ArticleCASPubMedPubMed Central Google Scholar
Mdluli, K. E. et al. Serum sensitive mutation of Francisella novicida association with an ABC transporter gene. Microbiology140, 3309–3318 (1994). ArticleCASPubMed Google Scholar
Sandstrom, G., Sjostedt, A., Johansson, T., Kuoppa, K. & Williams, J. C. Immunogenicity and toxicity of lipopolysaccharide from Francisella tularensis LVS. FEMS Microbiol. Immunol.5, 201–210 (1992). ArticleCASPubMed Google Scholar
Eigelsbach, H. T., Braun, W. & Herring, R. D. Studies on the variation of Bacterium tularense. J. Bacteriol.61, 557–569 (1951). CASPubMedPubMed Central Google Scholar
Cowley, S. C., Myltseva, S. V. & Nano, F. E. Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol. Microbiol.20, 867–874 (1996). Describes an unusual antigenic switch that might contribute to the pathogenicity ofF. tularensis. ArticleCASPubMed Google Scholar
Lauriano, C. M., Barker, J. R., Nano, F. E., Arulanandarn, B. P. & Klose, K. E. Allelic exchange in Francisella tularensis using PCR products. FEMS Microbiol. Lett.229, 195–202 (2003). ArticleCASPubMed Google Scholar
Gil, H., Benach, J. L. & Thanassi, D. G. Presence of pili on the surface of Francisella tularensis. Infect. Immun.72, 3042–3047 (2004). ArticleCASPubMedPubMed Central Google Scholar
Craig, L., Pique, M. E. & Tainer, J. A. Type IV pilus structure and bacterial pathogenicity. Nature Rev. Microbiol.2, 363–378 (2004). ArticleCAS Google Scholar
Ancuta, P., Pedron, T., Girard, R., Sandstrom, G. & Chaby, R. Inability of Francisella tularensis lipopolysaccharide to mimic or to antagonize the induction of cell activation by endotoxins. Infect. Immun.64, 2041–2046 (1996). CASPubMedPubMed Central Google Scholar
Golovliov, I., Kuoppa, K., Sjostedt, A., Tarnvik, A. & Sandstrom, G. Cytokine expression in the liver of mice infected with a highly virulent strain of Francisella tularensis. FEMS Immunol. Med. Microbiol.13, 239–244 (1996). ArticleCASPubMed Google Scholar
Golovliov, I., Sandstrom, G., Ericsson, M., Sjostedt, A. & Tarnvik, A. Cytokine expression in the liver during the early phase of murine tularemia. Infect. Immun.63, 534–538 (1995). CASPubMedPubMed Central Google Scholar
Elkins, K. L., Leiby, D. A., Winegar, R. K., Nacy, C. A. & Fortier, A. H. Rapid generation of specific protective immunity to Francisella tularensis. Infect. Immun.60, 4571–4577 (1992). CASPubMedPubMed Central Google Scholar
Elkins, K. L., Rhinehart-Jones, T., Nacy, C. A., Winegar, R. K. & Fortier, A. H. T-cell-independent resistance to infection and generation of immunity to Francisella tularensis. Infect. Immun.61, 823–829 (1993). CASPubMedPubMed Central Google Scholar
Conlan, J. W., Sjostedt, A. & North, R. J. CD4+ and CD8+ T-cell-dependent and -independent host defence mechanisms can operate to control and resolve primary and secondary Francisella tularensis LVS infection in mice. Infect. Immun.62, 5603–5607 (1994). CASPubMedPubMed Central Google Scholar
Yee, D., Rhinehart-Jones, T. R. & Elkins, K. L. Loss of either CD4+ or CD8+ T cells does not affect the magnitude of protective immunity to an intracellular pathogen, Francisella tularensis strain LVS. J. Immunol.157, 5042–5048 (1996). CASPubMed Google Scholar
Fulop, M., Mastroeni, P., Green, M. & Titball, R. W. Role of antibody to lipopolysaccharide in protection against low- and high-virulence strains of Francisella tularensis. Vaccine19, 4465–4472 (2001). ArticleCASPubMed Google Scholar
Sumida, T. et al. Predominant expansion of V γ 9/V δ2 T cells in a tularemia patient. Infect. Immun.60, 2554–2558 (1992). CASPubMedPubMed Central Google Scholar
Kroca, M., Tarnvik, A. & Sjostedt, A. The proportion of circulating γδ T cells increases after the first week of onset of tularaemia and remains elevated for more than a year. Clin. Exp. Immunol.120, 280–284 (2000). ArticleCASPubMedPubMed Central Google Scholar
Eigelsbach, H. T., Hornick, R. B. & Tulis, J. J. Recent studies on live tularemia vaccine. Med. Ann. Dist. Columbia36, 282–286 (1967). CASPubMed Google Scholar
Burke, D. S. Immunization against tularemia: analysis of the effectiveness of live Francisella tularensis vaccine in prevention of laboratory acquired tularemia. J. Infect. Dis.135, 55–60 (1977). ArticleCASPubMed Google Scholar
Karlsson, J. et al. Sequencing of the Francisella tularensis strain Schu 4 genome reveals the shikimate and purine metabolic pathways, targets for the construction of a rationally attenuated auxotrophic vaccine. Microb. Comp. Genomics5, 25–39 (2000). Preliminary analysis of the first genome sequence ofF. tularensis. ArticleCASPubMed Google Scholar
Tarnvik, A. Nature of protective immunity to Francisella tularensis. Rev. Infect. Dis.11, 440–451 (1989). ArticleCASPubMed Google Scholar
Fulop, M., Manchee, R. & Titball, R. Role of two outer membrane antigens in the induction of protective immunity against Francisella tularensis strains of different virulence. FEMS Immunol. Med. Microbiol.13, 245–247 (1996). ArticleCASPubMed Google Scholar
Conlan, J. W., Shen, H., Webb, A. & Perry, M. B. Mice vaccinated with the O-antigen of Francisella tularensis LVS lipopolysaccharide conjugated to bovine serum albumin develop varying degrees of protective immunity against systemic or aerosol challenge with virulent type A and type B strains of the pathogen. Vaccine20, 3465–3471 (2002). References 85 and 93 show the prerequisites for protection differ between low- and high-virulence strains ofF. tularensis ArticleCASPubMed Google Scholar
Titball, R. W. & Oyston, P. C. F. A vaccine for tularaemia. Expert Opin. Biol. Ther.3, 1–9 (2003). Article Google Scholar
Bevanger, L., Maeland, J. A. & Naess, A. I. Agglutinins and antibodies to Francisella tularensis outer membrane antigens in the early diagnosis of disease during an outbreak of Tularemia. J. Clin. Microbiol.26, 433–437 (1988). CASPubMedPubMed Central Google Scholar
Havlasova, J. et al. Mapping of immunoreactive antigens of Francisella tularensis live vaccine strain. Proteomics2, 857–867 (2002). First description of the proteome ofF. tularensis. ArticleCASPubMed Google Scholar
Ericsson, M., Kroca, M., Johansson, T., Sjostedt, A. & Tarnvik, A. Long-lasting recall response of CD4+ and CD8+ αβ T cells, but not γδ T cells, to heat shock proteins of Francisella tularensis. Scand. J. Infect. Dis.33, 145–152 (2001). ArticleCASPubMed Google Scholar
Sjostedt, A., Sandstrom, G. & Tarnvik, A. Several membrane polypeptides of the live vaccine strain Francisella tularensis LVS stimulate T cells from naturally infected individuals. J. Clin. Microbiol.28, 43–48 (1990). CASPubMedPubMed Central Google Scholar
Sjostedt, A., Sandstrom, G. & Tarnvik, A. Humoral and cell-mediated-immunity in mice to a 17-kilodalton lipoprotein of Francisella tularensis expressed by Salmonella typhimurium. Infect. Immun.60, 2855–2862 (1992). CASPubMedPubMed Central Google Scholar
Ikaheimo, I., Syrjala, H., Karhukorpi, J., Schildt, R. & Koskela, M. In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J. Antimicrob. Chemother.46, 287–290 (2000). ArticleCASPubMed Google Scholar
Enderlin, G., Morales, L., Jacobs, R. F. & Cross, J. T. Streptomycin and alternative agents for the treatment of tularemia: review of the literature. Clin. Infect. Dis.19, 42–47 (1994). ArticleCASPubMed Google Scholar
Johansson, A., Urich, S. K., Chu, M. C., Sjöstedt, A. & Tärnvik, A. In vitro susceptibility to quinolones of Francisella tularensis subspecies tularensis. Scand. J. Infect. Dis.34, 327–330 (2002). ArticleCASPubMed Google Scholar
Johansson, A., Berglund, L., Gothefors, L., Sjostedt, A. & Tarnvik, A. Ciprofloxacin for treatment of tularemia in children. Pediatr. Infect. Dis. J.19, 449–453 (2000). ArticleCASPubMed Google Scholar
Perez-Castrillon, J. L., Bachiller-Luque, P., Martin-Luquero, M., Mena-Martin, F. J. & Herreros, V. Tularemia epidemic in northwestern Spain: clinical description and therapeutic response. Clin.Infect. Dis.33, 573–6 (2001). ArticleCASPubMed Google Scholar
Petersen, J. M. et al. Laboratory analysis of tularemia in wild-trapped, commercially traded prairie dogs, Texas, 2002. Emerg. Infect. Dis.10, 419–425 (2004). ArticlePubMedPubMed Central Google Scholar
Avashia, S. B. et al. First reported prairie dog-to-human tularemia transmission, Texas, 2002. Emerg. Infect. Dis.10, 483–486 (2004). ArticlePubMedPubMed Central Google Scholar
Feldman, K. A. et al. An outbreak of primary pneumonic tularemia on Martha's Vineyard. N. Engl J. Med.345, 1601–1606 (2001). ArticleCASPubMed Google Scholar
Feldman, K. A. et al. Tularemia on Martha's Vineyard: seroprevalence and occupational risk. Emerg. Infect. Dis.9, 350–354 (2003). ArticlePubMedPubMed Central Google Scholar
Chien, M. et al. The genomic sequence of the accidental pathogen Legionella pneumophila. Science.305, 1966–1968 (2004). ArticleCASPubMed Google Scholar
Lindgren, H. et al. Factors affecting the escape of Francisella tularensis from the phagolysosome. J. Med. Microbiol.53, 953–958 (2004). ArticlePubMed Google Scholar