Bacterial competition: surviving and thriving in the microbial jungle (original) (raw)
Schluter, D. Ecological causes of adaptive radiation. Am. Nat.148, S40 (1996). Article Google Scholar
Connell, J. H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology42, 710–723 (1961). Article Google Scholar
Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl Acad. Sci. USA103, 12115–12120 (2006). ArticleCASPubMedPubMed Central Google Scholar
Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol.5, e77 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol.3, 371–394 (1949). ArticleCAS Google Scholar
Monod, J. La technique de culture continue; theorie et applications. Ann. Inst. Pasteur (Paris)79, 390–410 (1950). CAS Google Scholar
Tilman, D. Resource competition between planktonic algae: experimental and theoretical approach. Ecology58, 338–348 (1977). ArticleCAS Google Scholar
Tilman, D. The resource-ratio hypothesis of plant succession. Am. Nat.125, 827–852 (1985). Article Google Scholar
Murray, M. G. & Baird, D. R. Resource-ratio theory applied to large herbivores. Ecology89, 1445–1456 (2008). ArticlePubMed Google Scholar
Smith, V. Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek81, 99–106 (2002). ArticleCASPubMed Google Scholar
Cherif, M. & Loreau, M. Stoichiometric constraints on resource use, competitive interactions, and elemental cycling in microbial decomposers. Am. Nat.169, 709–724 (2007). ArticlePubMed Google Scholar
Kassen, R., Llewellyn, M. & Rainey, P. B. Ecological constraints on diversification in a model adaptive radiation. Nature431, 984–988 (2004). ArticleCASPubMed Google Scholar
Boles, B. R., Thoendel, M. & Singh, P. K. Self-generated diversity produces “insurance effects” in biofilm communities. Proc. Natl Acad. Sci. USA101, 16630–16635 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kirisits, M. J., Prost, L., Starkey, M. & Parsek, M. R. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol.71, 4809–4821 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature394, 69–72 (1998). This study shows that providingP. fluorescenswith ecological opportunity (growth in spatially structured, static liquid cultures) results in predictable diversification. ArticleCASPubMed Google Scholar
Czárán, T. L., Hoekstra, R. F. & Pagie, L. Chemical warfare between microbes promotes biodiversity. Proc. Natl Acad. Sci. USA99, 786–790 (2002). ArticlePubMedCASPubMed Central Google Scholar
Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature418, 171–174 (2002). Using a model system with colicin-producing, colicin-sensitive and colicin-resistantE. coli, this work elegantly shows the ability of this combination of strains to establish a non-transitive competitive network, as predicted by a model that is elaborated in this paper, and also illustrates the importance of spatial structure in establishing and maintaining the network. ArticleCASPubMed Google Scholar
Reichenbach, T., Mobilia, M. & Frey, E. Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature448, 1046–1049 (2007). ArticleCASPubMed Google Scholar
Narisawa, N., Haruta, S., Arai, H., Ishii, M. & Igarashi, Y. Coexistence of antibiotic-producing and antibiotic-sensitive bacteria in biofilms is mediated by resistant bacteria. Appl. Environ. Microbiol.74, 3887–3894 (2008). The authors demonstrate the ability of three species isolated from the same sediment to establish a non-transitive competitive network that shares many features of the model network that is described in reference 17. ArticleCASPubMedPubMed Central Google Scholar
Coleman, M. L. & Chisholm, S. W. Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol.15, 398–407 (2007). ArticleCASPubMed Google Scholar
Garcia-Fernandez, J. M., de Marsac, N. T. & Diez, J. Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol. Mol. Biol. Rev.68, 630–638 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sullivan, M. B., Waterbury, J. B. & Chisholm, S. W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature424, 1047–1051 (2003). ArticleCASPubMed Google Scholar
Coleman, M. L. et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science311, 1768–1770 (2006). ArticleCASPubMed Google Scholar
Hense, B. A. et al. Does efficiency sensing unify diffusion and quorum sensing? Nature Rev. Microbiol.5, 230–239 (2007). ArticleCAS Google Scholar
West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst.38, 53–77 (2007). Article Google Scholar
Sandoz, K. M., Mitzimberg, S. M. & Schuster, M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl Acad. Sci. USA104, 15876–15881 (2007). ArticleCASPubMedPubMed Central Google Scholar
Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature450, 411–414 (2007). This study and that described in reference 27 delineate conditions under which social cheaters ofP. aeruginosa(that is, mutants that no longer respond to a quorum-sensing signal) accumulate. ArticleCASPubMed Google Scholar
Rainey, P. B. & Rainey, K. Evolution of cooperation and conflict in experimental bacterial populations. Nature425, 72–74 (2003). ArticleCASPubMed Google Scholar
Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. USA103, 8487–8492 (2006). This work documents the accumulation of mutations inP. aeruginosapopulations that live in the lungs of patients with cystic fibrosis and finds a high rate of mutation in the gene encoding the quorum-sensing regulator,lasR. ArticleCASPubMedPubMed Central Google Scholar
D'Argenio, D. A. et al. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol. Microbiol.64, 512–533 (2007). ArticleCASPubMedPubMed Central Google Scholar
Travisano, M. & Velicer, G. J. Strategies of microbial cheater control. Trends Microbiol.12, 72–78 (2004). ArticleCASPubMed Google Scholar
Fiegna, F. & Velicer, G. J. Competitive fates of bacterial social parasites: persistence and self-induced extinction of Myxococcus xanthus cheaters. Proc. R. Soc. Lond. B270, 1527–1534 (2003). Article Google Scholar
Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature430, 1024–1027 (2004). ArticleCASPubMed Google Scholar
Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell124, 803–814 (2006). ArticleCASPubMed Google Scholar
Hansen, S. K., Rainey, P. B., Haagensen, J. A. & Molin, S. Evolution of species interactions in a biofilm community. Nature445, 533–536 (2007). Describes the interaction of two nutritionally dependent bacteria and the short-term development of mechanisms to enhance their physical association. ArticleCASPubMed Google Scholar
Christensen, B. B., Haagensen, J. A. J., Heydorn, A. & Molin, S. Metabolic commensalism and competition in a two-species microbial consortium. Appl. Environ. Microbiol.68, 2495–2502 (2002). ArticleCASPubMedPubMed Central Google Scholar
Tong, H. et al. Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H2O2: a possible counteroffensive strategy for interspecies competition. Mol. Microbiol.63, 872–880 (2007). This paper depicts a particularly intriguing competitive interaction that may have resulted from co-evolution of two species living in the human oral cavity. ArticleCASPubMed Google Scholar
Nicholson, A. J. An outline of the dynamics of animal populations. Aust. J. Zool.2, 9–65 (1954). Article Google Scholar
Wilson, E. O. Sociobiology: The New Synthesis (The Belknap Press, Cambridge, Massachusetts, 2000). Google Scholar
Oehmen, A. et al. Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res.41, 2271–2300 (2007). ArticleCASPubMed Google Scholar
Wandersman, C. & Delepelaire, P. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol.58, 611–647 (2004). ArticleCASPubMed Google Scholar
Khan, A. et al. Differential cross-utilization of heterologous siderophores by nodule bacteria of Cajanus cajan and its possible role in growth under iron-limited conditions. Agric. Ecosyst. Environ. Appl. Soil Ecol.34, 19–26 (2006). Article Google Scholar
Joshi, F., Archana, G. & Desai, A. Siderophore cross-utilization amongst rhizospheric bacteria and the role of their differential affinities for Fe3+ on growth stimulation under iron-limited conditions. Curr. Microbiol.53, 141–147 (2006). ArticleCASPubMed Google Scholar
Weaver, V. B. & Kolter, R. Burkholderia spp. alter Pseudomonas aeruginosa physiology through iron sequestration. J. Bacteriol.186, 2376–2384 (2004). ArticleCASPubMedPubMed Central Google Scholar
West, S. A. & Buckling, A. Cooperation, virulence and siderophore production in bacterial parasites. Proc. R. Soc. Lond. B270, 37–44 (2003). Article Google Scholar
Harrison, F., Paul, J., Massey, R. C. & Buckling, A. Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J.2, 49–55 (2008). One of the few studies that seeks to integrate research on the requirements for maintaining intraspecies cooperation with that on the pressure that is imposed by competition from another species. ArticlePubMed Google Scholar
Mashburn, L. M., Jett, A. M., Akins, D. R. & Whiteley, M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J. Bacteriol.187, 554–566 (2005). This study uses expression analysis to examine the antagonistic behaviour ofP. aeruginosawhen it killsS. aureusto access its iron in a rat peritoneal cavity: a true example of a rumble in the microbial jungle. ArticleCASPubMedPubMed Central Google Scholar
Rickard, A. H., Gilbert, P., High, N. J., Kolenbrander, P. E. & Handley, P. S. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol.11, 94–100 (2003). ArticleCASPubMed Google Scholar
Irie, Y., O'Toole, G. A. & Yuk, M. H. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol. Lett.250, 237–243 (2005). ArticleCASPubMed Google Scholar
Davies, D. G. & Marques, C. N. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol.191, 1393–1403 (2009). This paper presents the identification and characterization of a specific fatty acid produced byP. aeruginosathat, at nanomolar concentrations, stimulates the dispersal of biofilms of a number of other microbial species. ArticleCASPubMed Google Scholar
Golowczyc, M. A., Mobili, P., Garrote, G. L., Abraham, A. G. & De Antoni, G. L. Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. Int. J. Food Microbiol.118, 264–273 (2007). ArticleCASPubMed Google Scholar
Johnson-Henry, K. C., Hagen, K. E., Gordonpour, M., Tompkins, T. A. & Sherman, P. M. Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157: H7 adhesion to epithelial cells. Cell. Microbiol.9, 356–367 (2007). ArticleCASPubMed Google Scholar
Horie, M. et al. Inhibition of the adherence of Escherichia coli strains to basement membrane by Lactobacillus crispatus expressing an S-layer. J. Appl. Microbiol.92, 396–403 (2002). ArticleCASPubMed Google Scholar
An, D. D., Danhorn, T., Fuqua, C. & Parsek, M. R. Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc. Natl Acad. Sci. USA103, 3828–3833 (2006). This study identified quorum sensing as an important mechanism that controls the interaction of two bacterial species in several different cultivation formats and that dictates the relative competitive advantage of each species. ArticleCASPubMedPubMed Central Google Scholar
Klausen, M., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol.50, 61–68 (2003). ArticleCASPubMed Google Scholar
Flannagan, R. S., Valvano, M. A. & Koval, S. F. Downregulation of the motA gene delays the escape of the obligate predator Bdellovibrio bacteriovorus 109J from bdelloplasts of bacterial prey cells. Microbiology150, 649–656 (2004). ArticleCASPubMed Google Scholar
Pham, V. D., Shebelut, C. W., Diodati, M. E., Bull, C. T. & Singer, M. Mutations affecting predation ability of the soil bacterium Myxococcus xanthus. Microbiology151, 1865–1874 (2005). ArticleCASPubMed Google Scholar
Verstraeten, N. et al. Living on a surface: swarming and biofilm formation. Trends Microbiol.16, 496–506 (2008). ArticleCASPubMed Google Scholar
McBride, M. J. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol.55, 49–75 (2001). ArticleCASPubMed Google Scholar
Chao, L. & Levin, B. R. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc. Natl Acad. Sci. USA78, 6324–6328 (1981). ArticleCASPubMedPubMed Central Google Scholar
Uroz, S. et al. _N_-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology151, 3313–3322 (2005). ArticleCASPubMed Google Scholar
Dong, Y. H., Wang, L. H. & Zhang, L. H. Quorum-quenching microbial infections: mechanisms and implications. Proc. R. Soc. Lond. B362, 1201–1211 (2007). CAS Google Scholar
Wang, Y. J. & Leadbetter, J. R. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl. Environ. Microbiol.71, 1291–1299 (2005). The authors provide a first glimpse of the prevalence and potential importance of biologically mediated degradation of acyl homoserine lactone signal molecules in the environment. ArticleCASPubMedPubMed Central Google Scholar
Leadbetter, J. R. & Greenberg, E. P. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol.182, 6921–6926 (2000). ArticleCASPubMedPubMed Central Google Scholar
Taga, M. E., Semmelhack, J. L. & Bassler, B. L. The LuxS-dependent autoinducer Al-2 controls the expression of an ABC transporter that functions in Al-2 uptake in Salmonella typhimurium. Mol. Microbiol.42, 777–793 (2001). ArticleCASPubMed Google Scholar
Lyon, G. J. & Novick, R. P. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides25, 1389–1403 (2004). ArticleCASPubMed Google Scholar
Ji, G. Y., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing peptide variants. Science276, 2027–2030 (1997). ArticleCASPubMed Google Scholar
Jarraud, S. et al. Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus. J. Bacteriol.182, 6517–6522 (2000). ArticleCASPubMedPubMed Central Google Scholar
Geisinger, E., George, E. A., Muir, T. W. & Novick, R. P. Identification of ligand specificity determinants in AgrC, the Staphylococcus aureus quorum-sensing receptor. J. Biol. Chem.283, 8930–8938 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wang, B. Y. & Kuramitsu, H. K. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl. Environ. Microbiol.71, 354–362 (2005). This work provides evidence to support a role for signal degradation in mediating competition between Gram-positive residents of the human oral cavity. ArticleCASPubMedPubMed Central Google Scholar
Kuramitsu, H. K., He, X., Lux, R., Anderson, M. H. & Shi, W. Interspecies interactions within oral microbial communities. Microbiol. Mol. Biol. Rev.71, 653–670 (2007). ArticleCASPubMedPubMed Central Google Scholar
Simu, K. & Hagstrom, A. Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl. Environ. Microbiol.70, 2445–2451 (2004). ArticleCASPubMedPubMed Central Google Scholar
Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA105, 4209–4214 (2008). ArticleCASPubMedPubMed Central Google Scholar
Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nature Rev. Microbiol.5, 384–392 (2007). ArticleCAS Google Scholar
Yim, G., Wang, H. M. H. & Davies, J. Antibiotics as signalling molecules. Proc. R. Soc. Lond. B362, 1195–1200 (2007). CAS Google Scholar
Goh, E. B. et al. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl Acad. Sci. USA99, 17025–17030 (2002). ArticleCASPubMedPubMed Central Google Scholar
Davies, J., Spiegelman, G. B. & Yim, G. The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol.9, 445–453 (2006). ArticleCASPubMed Google Scholar
Hoffman, L. R., D'Argenio, D. A., Bader, M. & Miller, S. I. Microbial recognition of antibiotics: ecological, physiological, and therapeutic implications. Microbe2, 175–182 (2007). Google Scholar
Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol.4, 249–258 (2006). ArticleCASPubMed Google Scholar
Price-Whelan, A., Dietrich, L. E. P. & Newman, D. K. Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics. Nature Chem. Biol.2, 71–78 (2006). ArticleCAS Google Scholar
López, D., Fischbach, M. A., Chu, F., Losick, R. & Kolter, R. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc. Natl Acad. Sci. USA106, 280–285 (2009). A range of small molecules, many of them previously characterized for their antimicrobial activity, are shown to influenceB. subtilisbiofilm development through a mechanism that involves the triggering of K+ leakage, which is in turn sensed by a particular membrane protein kinase. ArticlePubMed Google Scholar
Dietrich, L. E. P., Teal, T. K., Price-Whelan, A. & Newman, D. K. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science321, 1203–1206 (2008). ArticleCASPubMedPubMed Central Google Scholar
Challis, G. L. & Hopwood, D. A. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc. Natl Acad. Sci. USA100 (Suppl. 2), 14555–14561 (2003). ArticleCASPubMedPubMed Central Google Scholar
Reader, J. S. et al. Major biocontrol of plant tumors targets tRNA synthetase. Science309, 1533 (2005). ArticleCASPubMed Google Scholar
Kim, J. G. et al. Bases of biocontrol: Sequence predicts synthesis and mode of action of agrocin 84, the Trojan Horse antibiotic that controls crown gall. Proc. Natl Acad. Sci. USA103, 8846–8851 (2006). ArticleCASPubMedPubMed Central Google Scholar
Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nature Rev. Microbiol.3, 777–788 (2005). ArticleCAS Google Scholar
Ryan, M., Rea, M., Hill, C. & Ross, R. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl. Environ. Microbiol.62, 612–619 (1996). CASPubMedPubMed Central Google Scholar
Pierson, L. S. 3rd, Keppenne, V. D. & Wood, D. W. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30–84 is regulated by PhzR in response to cell density. J. Bacteriol.176, 3966–3974 (1994). ArticleCASPubMedPubMed Central Google Scholar
Wood, D. W. & Pierson, L. S. 3rd. The phzI gene of Pseudomonas aureofaciens 30–84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene168, 49–53 (1996). ArticleCASPubMed Google Scholar
Barnard, A. M. et al. Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Phil. Trans. R. Soc. Lond. B362, 1165–1183 (2007). ArticleCAS Google Scholar
Pessi, G. & Haas, D. Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J. Bacteriol.182, 6940–6949 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ochsner, U. A. & Reiser, J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA92, 6424–6428 (1995). ArticleCASPubMedPubMed Central Google Scholar
Brint, J. M. & Ohman, D. E. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J. Bacteriol.177, 7155–7163 (1995). ArticleCASPubMedPubMed Central Google Scholar
Duerkop, B. A. et al. Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis. J. Bacteriol.191, 3909–3918 (2009). ArticleCASPubMedPubMed Central Google Scholar
Horinouchi, S. A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front. Biosci.7, d2045–d2057 (2002). CASPubMed Google Scholar
Corre, C., Song, L., O'Rourke, S., Chater, K. F. & Challis, G. L. 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc. Natl Acad. Sci. USA105, 17510–17515 (2008). ArticleCASPubMedPubMed Central Google Scholar
Choi, S., Lee, C., Hwang, Y., Kinoshita, H. & Nihira, T. Cloning and functional analysis by gene disruption of a gene encoding a γ-butyrolactone autoregulator receptor from Kitasatospora setae. J. Bacteriol.186, 3423–3430 (2004). ArticleCASPubMedPubMed Central Google Scholar
Fontaine, L. et al. Quorum-sensing regulation of the production of Blp bacteriocins in Streptococcus thermophilus. J. Bacteriol.189, 7195–7205 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G., Luesink, E. J. & de Vos, W. M. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem.270, 27299–27304 (1995). ArticleCASPubMed Google Scholar
Stein, T. et al. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Mol. Microbiol.44, 403–416 (2002). ArticleCASPubMed Google Scholar