Jishage, M., Kvint, K., Shingler, V. & Nystrom, T. Regulation of σ factor competition by the alarmone ppGpp. Genes Dev.16, 1260–1270 (2002). Genetic and biochemical studies that establish the concept of σ-factor competition. ArticleCASPubMedPubMed Central Google Scholar
Dalebroux, Z. D., Svensson, S. L., Gaynor, E. C. & Swanson, M. S. ppGpp conjures bacterial virulence. Microbiol. Mol. Biol. Rev.74, 171–199 (2010). ArticleCASPubMedPubMed Central Google Scholar
Haugen, S. P., Ross, W. & Gourse, R. L. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nature Rev. Microbiol.6, 507–519 (2008). ArticleCAS Google Scholar
Osterberg, S., Del Peso-Santos, T. & Shingler, V. Regulation of alternative sigma factor use. Annu. Rev. Microbiol.65, 37–55 (2011). ArticleCASPubMed Google Scholar
Murray, H. D., Schneider, D. A. & Gourse, R. L. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol. Cell12, 125–134 (2003). ArticleCASPubMed Google Scholar
Potrykus, K., Murphy, H., Philippe, N. & Cashel, M. ppGpp is the major source of growth rate control in E. coli. Environ. Microbiol.13, 563–575 (2011). ArticleCASPubMed Google Scholar
Wang, J. D., Sanders, G. M. & Grossman, A. D. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell128, 865–875 (2007). An analysis of DNA replication inE. colicultures and with purified components identifies direct inhibition of DNA primase activity by ppGpp. ArticleCASPubMedPubMed Central Google Scholar
Boehm, A. et al. Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol. Microbiol.72, 1500–1516 (2009). A genetic study demonstrating synergy between the ppGpp and c-di-GMP signalling pathways. ArticleCASPubMed Google Scholar
Rao, F. et al. YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J. Biol. Chem.285, 473–482 (2010). A biochemical analysis showing that ppGpp inhibits the degradation of c-di-AMP by YybT. ArticleCASPubMed Google Scholar
Hengge-Aronis, R. Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev.66, 373–395 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dong, T. & Schellhorn, H. E. Role of RpoS in virulence of pathogens. Infect. Immun.78, 887–897 (2010). ArticleCASPubMed Google Scholar
Shingler, V. Signal sensory systems that impact σ54-dependent transcription. FEMS Microbiol. Rev.35, 425–440 (2010). ArticleCASPubMed Google Scholar
Gummesson, B. et al. Increased RNA polymerase availability directs resources towards growth at the expense of maintenance. EMBO J.28, 2209–2219 (2009). ArticleCASPubMedPubMed Central Google Scholar
Battesti, A., Majdalani, N. & Gottesman, S. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol.65, 189–213 (2011). ArticleCASPubMedPubMed Central Google Scholar
Klauck, E., Typas, A. & Hengge, R. The σS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci. Prog.90, 103–127 (2007). ArticleCASPubMed Google Scholar
Bougdour, A., Wickner, S. & Gottesman, S. Modulating RssB activity: IraP, a novel regulator of σS stability in Escherichia coli. Genes Dev.20, 884–897 (2006). A molecular genetics investigation which finds that stabilization of σSduring phosphate starvation is mediated by SpoT-induced activation ofiraPtranscription. ArticleCASPubMedPubMed Central Google Scholar
Bougdour, A. & Gottesman, S. ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. Proc. Natl Acad. Sci. USA104, 12896–12901 (2007). ArticleCASPubMedPubMed Central Google Scholar
Merrikh, H., Ferrazzoli, A. E. & Lovett, S. T. Growth phase and (p)ppGpp control of IraD, a regulator of RpoS stability, in Escherichia coli. J. Bacteriol.191, 7436–7446 (2009). ArticleCASPubMedPubMed Central Google Scholar
Merrikh, H., Ferrazzoli, A. E., Bougdour, A., Olivier-Mason, A. & Lovett, S. T. A DNA damage response in Escherichia coli involving the alternative sigma factor, RpoS. Proc. Natl Acad. Sci. USA 106, 611–616 (2009). ArticlePubMedPubMed Central Google Scholar
Ades, S. E. Regulation by destruction: design of the σE envelope stress response. Curr. Opin. Microbiol.11, 535–540 (2008). ArticleCASPubMed Google Scholar
Durfee, T., Hansen, A. M., Zhi, H., Blattner, F. R. & Jin, D. J. Transcription profiling of the stringent response in Escherichia coli. J. Bacteriol.190, 1084–1096 (2008). ArticleCASPubMed Google Scholar
Costanzo, A. & Ades, S. E. Growth phase-dependent regulation of the extracytoplasmic stress factor, σE, by guanosine 3′,5′-bispyrophosphate (ppGpp). J. Bacteriol.188, 4627–4634 (2006). ArticleCASPubMedPubMed Central Google Scholar
Costanzo, A. et al. ppGpp and DksA likely regulate the activity of the extracytoplasmic stress factor σE in Escherichia coli by both direct and indirect mechanisms. Mol. Microbiol.67, 619–632 (2008). A biochemical experiment determining that ppGpp directly stimulates σEactivity, together with anin vivoanalysis that indicates enhanced competition for RNAP also occurs. ArticleCASPubMed Google Scholar
Dalebroux, Z. D. “Magic Spot” Conjures Transmission of Legionella pneumophila. Thesis, Univ. Michigan (2010). Google Scholar
Edwards, A. N. et al. Circuitry linking the Csr and stringent response global regulatory systems. Mol. Microbiol.80, 1561–1580 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jackson, D. W. et al. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J. Bacteriol.184, 290–301 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wei, B. L. et al. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol.40, 245–256 (2001). ArticleCASPubMed Google Scholar
Molofsky, A. B. & Swanson, M. S. Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol. Microbiol.50, 445–461 (2003). ArticleCASPubMed Google Scholar
Bhatt, S. et al. The RNA binding protein CsrA is a pleiotropic regulator of the locus of enterocyte effacement pathogenicity island of enteropathogenic Escherichia coli. Infect. Immun.77, 3552–3568 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rasis, M. & Segal, G. The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol. Microbiol.72, 995–1010 (2009). ArticleCASPubMed Google Scholar
Brencic, A. & Lory, S. Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol. Microbiol.72, 612–632 (2009). ArticleCASPubMedPubMed Central Google Scholar
Molofsky, A. B. & Swanson, M. S. Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol. Microbiol.53, 29–40 (2004). ArticleCASPubMed Google Scholar
Lapouge, K., Schubert, M., Allain, F. H. & Haas, D. Gac/Rsm signal transduction pathway of γ-proteobacteria: from RNA recognition to regulation of social behaviour. Mol. Microbiol.67, 241–253 (2008). ArticleCASPubMed Google Scholar
Babitzke, P. & Romeo, T. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr. Opin. Microbiol.10, 156–163 (2007). ArticleCASPubMed Google Scholar
Gudapaty, S., Suzuki, K., Wang, X., Babitzke, P. & Romeo, T. Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli. J. Bacteriol.183, 6017–6027 (2001). ArticleCASPubMedPubMed Central Google Scholar
Weilbacher, T. et al. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol. Microbiol.48, 657–670 (2003). ArticleCASPubMed Google Scholar
Hovel-Miner., G. et al. σS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila. J. Bacteriol.191, 2461–2473 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sahr, T. et al. Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol. Microbiol.72, 741–762 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dalebroux, Z. D., Yagi, B. F., Sahr, T., Buchrieser, C. & Swanson, M. S. Distinct roles of ppGpp and DksA in Legionella pneumophila differentiation. Mol. Microbiol.76, 200–219 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jonas, K., Tomenius, H., Romling, U., Georgellis, D. & Melefors, O. Identification of YhdA as a regulator of the Escherichia coli carbon storage regulation system. FEMS Microbiol. Lett.264, 232–237 (2006). ArticleCASPubMed Google Scholar
Kato, A. & Groisman, E. A. The PhoQ/PhoP regulatory network of Salmonella enterica. Adv. Exp. Med. Biol.631, 7–21 (2008). ArticleCASPubMed Google Scholar
Norte, V. A., Stapleton, M. R. & Green, J. PhoP-responsive expression of the Salmonella enterica serovar typhimurium slyA gene. J. Bacteriol.185, 3508–3514 (2003). ArticleCASPubMedPubMed Central Google Scholar
Miller, S. I., Kukral, A. M. & Mekalanos, J. J. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc. Natl Acad. Sci. USA86, 5054–5058 (1989). ArticleCASPubMedPubMed Central Google Scholar
Libby, S. J. et al. A cytolysin encoded by Salmonella is required for survival within macrophages. Proc. Natl Acad. Sci. USA91, 489–493 (1994). ArticleCASPubMedPubMed Central Google Scholar
Ellison, D. W. & Miller, V. L. Regulation of virulence by members of the MarR/SlyA family. Curr. Opin. Microbiol.9, 153–159 (2006). ArticleCASPubMed Google Scholar
Shi, Y., Latifi, T., Cromie, M. J. & Groisman, E. A. Transcriptional control of the antimicrobial peptide resistance ugtL gene by the Salmonella PhoP and SlyA regulatory proteins. J. Biol. Chem.279, 38618–38625 (2004). ArticleCASPubMed Google Scholar
Zhao, G., Weatherspoon, N., Kong, W., Curtiss, R., & Shi, Y. A dual-signal regulatory circuit activates transcription of a set of divergent operons in Salmonella typhimurium. Proc. Natl Acad. Sci. USA105, 20924–20929 (2008). Genetic and biochemical experiments which demonstrate that ppGpp binds the transcription factor SlyA and promotes its dimerization, DNA binding and activity as a transcriptional activator. ArticlePubMedPubMed Central Google Scholar
Prost, L. R., Sanowar, S. & Miller, S. I. Salmonella sensing of anti-microbial mechanisms to promote survival within macrophages. Immunol. Rev.219, 55–65 (2007). ArticleCASPubMed Google Scholar
Lauriano, C. M. et al. MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc. Natl Acad. Sci. USA101, 4246–4249 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ishihama, A. & Saitoh, T. Subunits of RNA polymerase in function and structure. IX. Regulation of RNA polymerase activity by stringent starvation protein (SSP). J. Mol. Biol.129, 517–530 (1979). ArticleCASPubMed Google Scholar
Williams, M. D., Ouyang, T. X. & Flickinger, M. C. Starvation-induced expression of SspA and SspB: the effects of a null mutation in sspA on Escherichia coli protein synthesis and survival during growth and prolonged starvation. Mol. Microbiol.11, 1029–1043 (1994). ArticleCASPubMed Google Scholar
Guina, T. et al. MglA regulates Francisella tularensis subsp. novicida (Francisella novicida) response to starvation and oxidative stress. J. Bacteriol.189, 6580–6586 (2007). ArticleCASPubMedPubMed Central Google Scholar
Charity, J. C., Blalock, L. T., Costante-Hamm, M. M., Kasper, D. L. & Dove, S. L. Small molecule control of virulence gene expression in Francisella tularensis. PLoS Pathog 5, e1000641 (2009). Molecular genetic, biochemical and cell biological analyses determining that ppGpp binding promotes assembly and activity of a transcriptional complex which is crucial for intracellular growth.
Cashel, M. & Rudd, K.E. in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (eds Neidhardt, F. C. et al.) 1458–1496 (American Society for Microbiology, Washington DC, 1996). Google Scholar
Srivatsan, A. & Wang, J. D. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr. Opin. Microbiol.11, 100–105 (2008). ArticleCASPubMed Google Scholar
Siculella, L. et al. Guanosine 5′-diphosphate 3′-diphosphate (ppGpp) as a negative modulator of polynucleotide phosphorylase activity in a 'rare' actinomycete. Mol. Microbiol.77, 716–729 (2010). In vitroandin vivoexperiments which establish that ppGpp binds and inhibits the activity of an enzyme that destabilizes mRNAs. ArticleCASPubMed Google Scholar
Gatewood, M. L. & Jones, G. H. (p)ppGpp inhibits polynucleotide phosphorylase from streptomyces but not from Escherichia coli and increases the stability of bulk mRNA in Streptomyces coelicolor. J. Bacteriol.192, 4275–4280 (2010). A biochemical study demonstrating that direct binding by ppGpp inhibits enzymes that destabilize mRNA. ArticleCASPubMedPubMed Central Google Scholar
Kanjee, U. et al. Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. EMBO J.30, 931–944 (2011). The crystalography and enzymatic assays that establish ppGpp as a direct regulator of enyzme activity. ArticleCASPubMedPubMed Central Google Scholar
Rao, N. N., Gomez-Garcia, M. R. & Kornberg, A. Inorganic polyphosphate: essential for growth and survival. Annu. Rev. Biochem.78, 605–647 (2009). ArticleCASPubMed Google Scholar
Alifano, P., Bruni, C. B. & Carlomagno, M. S. Control of mRNA processing and decay in prokaryotes. Genetica94, 157–172 (1994). ArticleCASPubMed Google Scholar
Zhao, B. & Houry, W. A. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Biochem. Cell Biol.88, 301–314 (2010). ArticleCASPubMed Google Scholar
Merrell, D. S. & Camilli, A. Regulation of Vibrio cholerae genes required for acid tolerance by a member of the “ToxR-like” family of transcriptional regulators. J. Bacteriol.182, 5342–5350 (2000). ArticleCASPubMedPubMed Central Google Scholar
Park, Y. K., Bearson, B., Bang, S. H., Bang, I. S. & Foster, J. W. Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. Mol. Microbiol.20, 605–611 (1996). ArticleCASPubMed Google Scholar
Kuroda, A., Murphy, H., Cashel, M. & Kornberg, A. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J. Biol. Chem.272, 21240–21243 (1997). ArticleCASPubMed Google Scholar
Kuroda, A. et al. Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science293, 705–708 (2001). ArticleCASPubMed Google Scholar
Wolz, C., Geiger, T. & Goerke, C. The synthesis and function of the alarmone (p)ppGpp in firmicutes. Int. J. Med. Microbiol.300, 142–147 (2010). ArticleCASPubMed Google Scholar
Gallant, J., Irr, J. & Cashel, M. The mechanism of amino acid control of guanylate and adenylate biosynthesis. J. Biol. Chem.246, 5812–5816 (1971). A seminal study demonstrating that ppGpp is a second messenger which accumulates during amino acid starvation and inhibits the activity of enzymes that initiate ATP and GTP biosynthesis. CASPubMed Google Scholar
Lopez, J. M., Dromerick, A. & Freese, E. Response of guanosine 5′-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J. Bacteriol.146, 605–613 (1981). CASPubMedPubMed Central Google Scholar
Krasny, L. & Gourse, R. L. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J.23, 4473–4483 (2004). The molecular genetic and biochemical experiments which establish that the consumption of GTP during ppGpp synthesis indirectly decreases rRNA synthesis inB. subtiliis. ArticleCASPubMedPubMed Central Google Scholar
Sonenshein, A. L. CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr. Opin. Microbiol.8, 203–207 (2005). ArticleCASPubMed Google Scholar
Geiger, T. et al. Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus. Infect. Immun.78, 1873–1883 (2010). ArticleCASPubMedPubMed Central Google Scholar
Malke, H., Steiner, K., McShan, W. M. & Ferretti, J. J. Linking the nutritional status of Streptococcus pyogenes to alteration of transcriptional gene expression: the action of CodY and RelA. Int. J. Med. Microbiol.296, 259–275 (2006). ArticleCASPubMed Google Scholar
Lemos, J. A., Nascimento, M. M., Lin, V. K., Abranches, J. & Burne, R. A. Global regulation by (p)ppGpp and CodY in Streptococcus mutans. J. Bacteriol.190, 5291–5299 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bennett, H. J. et al. Characterization of relA and codY mutants of Listeria monocytogenes: identification of the CodY regulon and its role in virulence. Mol. Microbiol.63, 1453–1467 (2007). ArticleCASPubMed Google Scholar
Romling, U. & Simm, R. Prevailing concepts of c-di-GMP signaling. Contrib. Microbiol.16, 161–181 (2009). ArticlePubMed Google Scholar
Hengge, R. Principles of c-di-GMP signalling in bacteria. Nature Rev. Microbiol.7, 263–273 (2009). ArticleCAS Google Scholar
McWhirter, S. M. et al. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J. Exp. Med.206, 1899–1911 (2009). The first work to demonstrate that treatment with cyclic nucleotides stimulates innate immune mechanisms of mammalian cells. ArticleCASPubMedPubMed Central Google Scholar
Woodward, J. J., Iavarone, A. T. & Portnoy, D. A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science328, 1703–1705 (2010). An investigation which uses bacterial genetics to establish that the production of cyclic nucleotides by an intracellular pathogen stimulates host innate immune defence pathways. ArticleCASPubMedPubMed Central Google Scholar
Vance, R. E., Isberg, R. R. & Portnoy, D. A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe6, 10–21 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hall-Stoodley, L. & Stoodley, P. Evolving concepts in biofilm infections. Cell. Microbiol.11, 1034–1043 (2009). ArticleCASPubMed Google Scholar
Hoffman, L. R. et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature436, 1171–1175 (2005). ArticleCASPubMed Google Scholar
Witte, G., Hartung, S., Buttner, K. & Hopfner, K. P. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell30, 167–178 (2008). ArticleCASPubMed Google Scholar
Romling, U. Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci. Signal1, pe39 (2008). ArticlePubMed Google Scholar
Traxler, M. F. et al. Discretely calibrated regulatory loops controlled by ppGpp partition gene induction across the 'feast to famine' gradient in Escherichia coli. Mol. Microbiol.79, 830–845 (2011). A transcriptional profile analysis identifying genes that require different amounts of ppGpp for their induction, thus illustrating a dynamic range for this regulatory pathway. ArticleCASPubMed Google Scholar
Rhee, H. W. et al. Selective fluorescent chemosensor for the bacterial alarmone (p)ppGpp. J. Am. Chem. Soc.130, 784–785 (2008). ArticleCASPubMed Google Scholar
Gao, W. et al. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog.6, e1000944 (2010). ArticleCASPubMedPubMed Central Google Scholar
Christen, M. et al. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science328, 1295–1297 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sun, D. et al. A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Nature Struct. Mol. Biol.17, 1188–1194 (2010). The first molecular and functional studies to identify stringent response components inD. melanogasterand human cells. ArticleCAS Google Scholar
Pizarro-Cerda, J. & Tedin, K. The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. Mol. Microbiol.52, 1827–1844 (2004). ArticleCASPubMed Google Scholar
Sun, W., Roland, K. L., Branger, C. G., Kuang, X. & Curtiss, R. The role of relA and spoT in Yersinia pestis KIM5 pathogenicity. PLoS ONE4, e6720 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zusman, T., Gal-Mor, O. & Segal, G. Characterization of a Legionella pneumophila relA insertion mutant and toles of RelA and RpoS in virulence gene expression. J. Bacteriol.184, 67–75 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dalebroux, Z. D., Edwards, R. L. & Swanson, M. S. SpoT governs Legionella pneumophila differentiation in host macrophages. Mol. Microbiol.71, 640–658 (2009). ArticleCASPubMed Google Scholar