Ulevitch, R. J. Therapeutics targeting the innate immune system. Nature Rev. Immunol.4, 512–520 (2004). ArticleCAS Google Scholar
Hamill, P., Brown, K., Jenssen, H. & Hancock, R. E. Novel anti-infectives: is host defence the answer? Curr. Opin. Biotechnol.19, 628–636 (2008). ArticleCASPubMed Google Scholar
Yang, Y. F. et al. Long-term efficacy of interferon α therapy on hepatitis B viral replication in patients with chronic hepatitis B: a meta-analysis. Antiviral Res.85, 361–365 (2010). ArticleCASPubMed Google Scholar
Jiang, X. R. et al. Advances in the assessment and control of the effector functions of therapeutic antibodies. Nature Rev. Drug Discov.10, 101–111 (2011). ArticleCAS Google Scholar
Scherer, A. & McLean, A. Mathematical models of vaccination. Br. Med. Bull.62, 187–199 (2002). ArticlePubMed Google Scholar
Karin, M., Lawrence, T. & Nizet, V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell124, 823–835 (2006). ArticleCASPubMed Google Scholar
Fjell, C. D., Hiss, J. A., Hancock, R. E. W. & Schneider, G. Designing antimicrobial peptides: form follows function. Nature Rev Drug Discov11, 37–51 (2011). ArticleCAS Google Scholar
Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nature Rev. Immunol.7, 179–190 (2007). ArticleCAS Google Scholar
Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388, 394–397 (1997). ArticleCASPubMed Google Scholar
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282, 2085–2088 (1998). ArticleCASPubMed Google Scholar
Hennessy, E. J., Parker, A. E. & O'Neill, L. A. Targeting Toll-like receptors: emerging therapeutics? Nature Rev. Drug Discov.9, 293–307 (2010). A highly comprehensive review of the ongoing development of TLR agonists and antagonists for therapeutic applications. ArticleCAS Google Scholar
Zaheer, S. A. et al. Combined multidrug and Mycobacterium w vaccine therapy in patients with multibacillary leprosy. J. Infect. Dis.167, 401–410 (1993). ArticleCASPubMed Google Scholar
Klinman, D. M., Xie, H. & Ivins, B. E. CpG oligonucleotides improve the protective immune response induced by the licensed anthrax vaccine. Ann. NY Acad. Sci.1082, 137–150 (2006). ArticleCASPubMed Google Scholar
Pastorelli, L., Pizarro, T. T., Cominelli, F. & Vecchi, M. Emerging drugs for the treatment of ulcerative colitis. Expert Opin. Emerg. Drugs14, 505–521 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rozy, A. & Chorostowska-Wynimko, J. Bacterial immunostimulants — mechanism of action and clinical application in respiratory diseases. Pneumonol. Alergol. Pol.76, 353–359 (2008). PubMed Google Scholar
Ruah, S. B., Ruah, C., van Aubel, A., Abel, S. & Elsasser, U. Efficacy of a polyvalent bacterial lysate in children with recurrent respiratory tract infections. Adv. Ther.18, 151–162 (2001). ArticleCASPubMed Google Scholar
Dittmer, U. & Olbrich, A. R. Treatment of infectious diseases with immunostimulatory oligodeoxynucleotides containing CpG motifs. Curr. Opin. Microbiol.6, 472–477 (2003). ArticleCASPubMed Google Scholar
Evans, S. E. et al. Stimulated innate resistance of lung epithelium protects mice broadly against bacteria and fungi. Am. J. Respir. Cell Mol. Biol.42, 40–50 (2009). ArticleCASPubMedPubMed Central Google Scholar
Munoz, N. et al. Mucosal administration of flagellin protects mice from Streptococcus pneumoniae lung infection. Infect. Immun.78, 4226–4233 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yu, F. S. et al. Flagellin stimulates protective lung mucosal immunity: role of cathelicidin-related antimicrobial peptide. J. Immunol.185, 1142–1149 (2010). ArticleCASPubMed Google Scholar
Kinnebrew, M. A. et al. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J. Infect. Dis.201, 534–543 (2010). ArticleCASPubMed Google Scholar
Clement, C. G. et al. Stimulation of lung innate immunity protects against lethal pneumococcal pneumonia in mice. Am. J. Respir. Crit. Care Med.177, 1322–1330 (2008). ArticlePubMedPubMed Central Google Scholar
Ireland, R. et al. Effective, broad spectrum control of virulent bacterial infections using cationic DNA liposome complexes combined with bacterial antigens. PLoS Pathog.6, e1000921 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tuvim, M. J., Evans, S. E., Clement, C. G., Dickey, B. F. & Gilbert, B. E. Augmented lung inflammation protects against influenza A pneumonia. PLoS ONE4, e4176 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shinya, K. et al. Toll-like receptor pre-stimulation protects mice against lethal infection with highly pathogenic influenza viruses. Virol. J.8, 97 (2011). ArticleCASPubMedPubMed Central Google Scholar
Antonelli, L. R. et al. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J. Clin. Invest.120, 1674–1682 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hotchkiss, R. S. & Karl, I. E. The pathophysiology and treatment of sepsis. N. Engl. J. Med.348, 138–150 (2003). An overview of the complex immune-mediated pathophysiology of sepsis and the complexities of treating patients with sepsis using immunomodulatory therapies. ArticleCASPubMed Google Scholar
Rice, T. W. et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit. Care Med.38, 1685–1694 (2010). ArticleCASPubMed Google Scholar
Tidswell, M. et al. Phase 2 trial of eritoran tetrasodium (E5564), a Toll-like receptor 4 antagonist, in patients with severe sepsis. Crit. Care Med.38, 72–83 (2010). ArticleCASPubMed Google Scholar
Barochia, A., Solomon, S., Cui, X., Natanson, C. & Eichacker, P. Q. Eritoran tetrasodium (E5564) treatment for sepsis: review of preclinical and clinical studies. Expert Opin. Drug Metab. Toxicol.7, 479–494 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ungaro, R. et al. A novel Toll-like receptor 4 antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis. Am. J. Physiol. Gastrointest. Liver Physiol.296, G1167–G1179 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell118, 229–241 (2004). ArticleCASPubMed Google Scholar
Abreu, M. T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nature Rev. Immunol.10, 131–144 (2010). ArticleCAS Google Scholar
Dupaul-Chicoine, J. et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity32, 367–378 (2010). ArticleCASPubMed Google Scholar
Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature446, 552–556 (2007). ArticleCASPubMed Google Scholar
Werts, C., Rubino, S., Ling, A., Girardin, S. E. & Philpott, D. J. Nod-like receptors in intestinal homeostasis, inflammation, and cancer. J. Leukoc. Biol.90, 471–482 (2011). ArticleCASPubMed Google Scholar
Sorbara, M. & Philpott, D. Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis. Immunol. Rev.243, 40–60 (2011). A review of how peptidoglycan recognition shapes the mammalian immune response. ArticleCASPubMed Google Scholar
Spreafico, R., Ricciardi-Castagnoli, P. & Mortellaro, A. The controversial relationship between NLRP3, alum, danger signals and the next-generation adjuvants. Eur. J. Immunol.40, 638–642 (2010). ArticleCASPubMed Google Scholar
Girardin, S. E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem.278, 8869–8872 (2003). ArticleCASPubMed Google Scholar
Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem.278, 5509–5512 (2003). ArticleCASPubMed Google Scholar
Chedid, L., Audibert, F. & Johnson, A. G. Biological activities of muramyl dipeptide, a synthetic glycopeptide analogous to bacterial immunoregulating agents. Prog. Allergy25, 63–105 (1978). CASPubMed Google Scholar
Fritz, J. H., et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity26, 445–459 (2007). ArticleCASPubMed Google Scholar
Magalhaes, J. G. et al. Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation. Proc. Natl Acad. Sci. USA108, 14896–14901 (2011). ArticleCASPubMedPubMed Central Google Scholar
O'Hagan, D. T. & De Gregorio, E. The path to a successful vaccine adjuvant – 'the long and winding road'. Drug Discov. Today14, 541–551 (2009). ArticleCASPubMed Google Scholar
Bahr, G. M. Non-specific immunotherapy of HIV-1 infection: potential use of the synthetic immunodulator murabutide. J. Antimicrob. Chemother.51, 5–8 (2003). ArticleCASPubMed Google Scholar
Mine, Y. et al. Immunoactive peptides, FK-156 and FK-565. I. Enhancement of host resistance to microbial infection in mice. J. Antibiot. (Tokyo)36, 1045–1050 (1983). ArticleCAS Google Scholar
Wardowska, A. et al. Analogues of muramyl dipeptide (MDP) and tuftsin limit infection and inflammation in murine model of sepsis. Vaccine27, 369–374 (2009). ArticleCASPubMed Google Scholar
Geddes, K., Magalhaes, J. G. & Girardin, S. E. Unleashing the therapeutic potential of NOD-like receptors. Nature Rev. Drug Discov.8, 465–479 (2009). ArticleCAS Google Scholar
Fukushima, A. et al. Effect of MDP-Lys(L18) as a mucosal immunoadjuvant on protection of mucosal infections by Sendai virus and rotavirus. Vaccine14, 485–491 (1996). ArticleCASPubMed Google Scholar
Sarkar, K. & Das, P. K. Protective effect of neoglycoprotein-conjugated muramyl dipeptide against Leishmania donovani infection: the role of cytokines. J. Immunol.158, 5357–5365 (1997). CASPubMed Google Scholar
Le Bourhis, L. et al. Role of Nod1 in mucosal dendritic cells during Salmonella pathogenicity island 1-independent Salmonella enterica serovar Typhimurium infection. Infect. Immun.77, 4480–4486 (2009). ArticleCASPubMedPubMed Central Google Scholar
O'Reilly, T. & Zak, O. Enhancement of the effectiveness of antimicrobial therapy by muramyl peptide immunomodulators. Clin. Infect. Dis.14, 1100–1109 (1992). ArticleCASPubMed Google Scholar
Kim, Y. G. et al. Viral infection augments Nod1/2 signaling to potentiate lethality associated with secondary bacterial infections. Cell Host Microbe9, 496–507 (2011). ArticleCASPubMedPubMed Central Google Scholar
Argast, G. M., Fausto, N. & Campbell, J. S. Inhibition of RIP2/RICK/CARDIAK activity by pyridinyl imidazole inhibitors of p38 MAPK. Mol. Cell. Biochem.268, 129–140 (2005). ArticleCASPubMed Google Scholar
Hancock, R. E. & Sahl, H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotech.24, 1551–1557 (2006). ArticleCAS Google Scholar
Nizet, V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature414, 454–457 (2001). ArticleCASPubMed Google Scholar
Ong, P. Y. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med.347, 1151–1160 (2002). ArticleCASPubMed Google Scholar
Nijnik, A., Pistolic, J., Wyatt, A., Tam, S. & Hancock, R. E. Human cathelicidin peptide LL-37 modulates the effects of IFN-γ on APCs. J. Immunol.183, 5788–5798 (2009). ArticleCASPubMed Google Scholar
Scott, M. G. et al. An anti-infective peptide that selectively modulates the innate immune response. Nature Biotech.25, 465–472 (2007). A study demonstrating that a synthetic immunomodulatory peptide with no direct antimicrobial activity can offer protection against antibiotic-resistant infections in mouse models, while inhibiting an excessive inflammatory response. ArticleCAS Google Scholar
Carretero, M. et al. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J. Invest. Dermatol.128, 223–236 (2008). ArticleCASPubMed Google Scholar
Hirsch, T. et al. Human beta-defensin-3 promotes wound healing in infected diabetic wounds. J. Gene Med.11, 220–228 (2009). ArticleCASPubMed Google Scholar
Easton, D. M., Nijnik, A., Mayer, M. L. & Hancock, R. E. Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol.27, 582–590 (2009). A recent comprehensive review of the ongoing development of synthetic peptides as immunomodulatory therapeutics. ArticleCASPubMedPubMed Central Google Scholar
Karaolis, D. K. et al. 3′,5′-cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation. Biochem. Biophys. Res. Commun.329, 40–45 (2005). ArticleCASPubMed Google Scholar
Brouillette, E., Hyodo, M., Hayakawa, Y., Karaolis, D. K. & Malouin, F. 3′,5′-cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. Antimicrob. Agents Chemother.49, 3109–3113 (2005). ArticleCASPubMedPubMed Central Google Scholar
Karaolis, D. K. et al. Bacterial c-di-GMP is an immunostimulatory molecule. J. Immunol.178, 2171–2181 (2007). ArticleCASPubMed Google Scholar
Chen, W., Kuolee, R. & Yan, H. The potential of 3′,5′-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine28, 3080–3085 (2010). ArticleCASPubMed Google Scholar
Ebensen, T. et al. Bis-(3′,5′)-cyclic dimeric adenosine monophosphate: strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine29, 5210–5220 (2011). ArticleCASPubMed Google Scholar
Sauer, J. D. et al. The _N_-ethyl-_N_-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun.79, 688–694 (2011). ArticleCASPubMed Google Scholar
Woodward, J. J., Iavarone, A. T. & Portnoy, D. A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science328, 1703–1705 (2010). ArticleCASPubMedPubMed Central Google Scholar
Smith, R. S., Harris, S. G., Phipps, R. & Iglewski, B. The Pseudomonas aeruginosa quorum-sensing molecule _N_-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. J. Bacteriol.184, 1132–1139 (2002). ArticleCASPubMedPubMed Central Google Scholar
Teplitski, M., Mathesius, U. & Rumbaugh, K. P. Perception and degradation of _N_-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem. Rev.111, 100–116 (2011). A thorough overview of the mechanisms of 'cross-kingdom' communication by quorum sensing molecules. ArticleCASPubMed Google Scholar
Mayer, M. L., Sheridan, J. A., Blohmke, C. J., Turvey, S. E. & Hancock, R. E. The Pseudomonas aeruginosa autoinducer 3O-C12 homoserine lactone provokes hyperinflammatory responses from cystic fibrosis airway epithelial cells. PLoS ONE6, e16246 (2011). ArticleCASPubMedPubMed Central Google Scholar
Khajanchi, B. K., Kirtley, M. L., Brackman, S. M. & Chopra, A. K. Immunomodulatory and protective roles of quorum-sensing signaling molecules _N_-acyl homoserine lactones during infection of mice with Aeromonas hydrophila. Infect. Immun.79, 2646–2657 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mattmann, M. E. & Blackwell, H. E. Small molecules that modulate quorum sensing and control virulence in Pseudomonas aeruginosa. J. Org. Chem.75, 6737–6746 (2010). A discussion about the strategies that can be used to interfere with quorum sensing pathways inPseudomonas aeruginosato potentially affect therapies. ArticleCASPubMedPubMed Central Google Scholar
Miyairi, S. et al. Immunization with 3-oxododecanoyl-L-homoserine lactone-protein conjugate protects mice from lethal Pseudomonas aeruginosa lung infection. J. Med. Microbiol.55, 1381–1387 (2006). ArticleCASPubMed Google Scholar
Wu, H. et al. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J. Antimicrob. Chemother.53, 1054–1061 (2004). ArticleCASPubMed Google Scholar
Smyth, A. R. et al. Garlic as an inhibitor of Pseudomonas aeruginosa quorum sensing in cystic fibrosis—a pilot randomized controlled trial. Pediatr. Pulmonol.45, 356–362 (2010). PubMed Google Scholar
Brackman, G., Cos, P., Maes, L., Nelis, H. J. & Coenye, T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob. Agents Chemother.55, 2655–2661 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gardy, J. L., Lynn, D. J., Brinkman, F. S. & Hancock, R. E. Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol.30, 249–262 (2009). A review of the applications of bioinformatics and systems biology in the study of innate immunity and host–pathogen interactions, including many references to online resources, such as databases and software tools, that are openly available to the scientific community. ArticleCASPubMed Google Scholar
Park, B. S. et al. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature458, 1191–1195 (2009). ArticleCASPubMed Google Scholar
Jin, M. S. et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell130, 1071–1082 (2007). ArticleCASPubMed Google Scholar
Choe, J., Kelker, M. S. & Wilson, I. A. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science309, 581–585 (2005). ArticleCASPubMed Google Scholar
Gavin, A. L. et al. Adjuvant-enhanced antibody responses in the absence of Toll-like receptor signaling. Science314, 1936–1938 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature470, 543–547 (2011). A recent study demonstrating that ligation of multiple TLRs by vaccine adjuvants is required for induction of long-term antibody responses and immunological memory. ArticleCASPubMedPubMed Central Google Scholar
Guy, B. The perfect mix: recent progress in adjuvant research. Nature Rev. Microbiol.5, 505–517 (2007). CAS Google Scholar
Biswas, S. K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol.30, 475–487 (2009). ArticleCASPubMed Google Scholar
Schellack, C. et al. IC31, a novel adjuvant signaling via TLR9, induces potent cellular and humoral immune responses. Vaccine24, 5461–5472 (2006). ArticleCASPubMed Google Scholar
van Dissel, J. T. et al. Ag85B–ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine29, 2100–2109 (2011). ArticleCASPubMed Google Scholar
Hilpert, K., Volkmer-Engert, R., Walter, T. & Hancock, R. E. High-throughput generation of small antibacterial peptides with improved activity. Nature Biotech.23, 1008–1012 (2005). ArticleCAS Google Scholar
Jenssen, H., Fjell, C. D., Cherkasov, A. & Hancock, R. E. QSAR modeling and computer-aided design of antimicrobial peptides. J. Pept. Sci.14, 110–114 (2008). ArticleCASPubMed Google Scholar
Loose, C., Jensen, K., Rigoutsos, I. & Stephanopoulos, G. A linguistic model for the rational design of antimicrobial peptides. Nature443, 867–869 (2006). ArticleCASPubMed Google Scholar
Braff, M. H. et al. Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J. Immunol.174, 4271–4278 (2005). ArticleCASPubMed Google Scholar
Nijnik, A. et al. Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J. Immunol.184, 2539–2550 (2010). ArticleCASPubMed Google Scholar
Fischer, P. M. The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr. Protein Pept. Sci.4, 339–356 (2003). ArticleCASPubMed Google Scholar
Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature449, 564–569 (2007). ArticleCASPubMed Google Scholar
Kindrachuk, J. et al. A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity. Vaccine27, 4662–4671 (2009). ArticleCASPubMed Google Scholar
Martineau, A. R. et al. High-dose vitamin D3 during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet377, 242–250 (2011). ArticleCASPubMedPubMed Central Google Scholar
Liu, P. T. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science311, 1770–1773 (2006). A study linking vitamin D deficiency to impaired immune defences against tuberculosis in the human population. ArticleCASPubMed Google Scholar
Raqib, R. et al. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc. Natl Acad. Sci. USA103, 9178–9183 (2006). ArticleCASPubMedPubMed Central Google Scholar
Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature449, 819–826 (2007). ArticleCASPubMed Google Scholar
Kumar, H., Kawai, T. & Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol.30, 16–34 (2009). ArticleCAS Google Scholar
Lambrecht, B. N., Kool, M., Willart, M. A. & Hammad, H. Mechanism of action of clinically approved adjuvants. Curr. Opin. Immunol.21, 23–29 (2009). ArticleCASPubMed Google Scholar
Nicholls, E. F., Madera, L. & Hancock, R. E. Immunomodulators as adjuvants for vaccines and antimicrobial therapy. Ann. NY Acad. Sci.1213, 46–61 (2011). ArticleCAS Google Scholar
Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nature Rev. Immunol.9, 313–323 (2009). ArticleCAS Google Scholar
Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: antibiotic effects on host–microbiota mutualism. Nature Rev. Microbiol.9, 233–243 (2011). ArticleCAS Google Scholar
Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nature Rev. Microbiol.8, 171–184 (2010). Three reviews (references 111–113) that cover the recent developments in our understanding of the host interactions with the gut microbiota and the roles of these interactions in health and disease. ArticleCAS Google Scholar
Schlee, M. et al. Induction of human β-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect. Immun.75, 2399–2407 (2007). ArticleCASPubMedPubMed Central Google Scholar
Cosseau, C. et al. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect. Immun.76, 4163–4175 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hafez, M. et al. The K5 capsule of Escherichia coli strain Nissle 1917 is important in mediating interactions with intestinal epithelial cells and chemokine induction. Infect. Immun.77, 2995–3003 (2009). ArticleCASPubMedPubMed Central Google Scholar
Senok, A. C., Verstraelen, H., Temmerman, M. & Botta, G. A. Probiotics for the treatment of bacterial vaginosis. Cochrane Database Syst. Rev.4, CD006289 (2009). Google Scholar
Twetman, S. & Stecksen-Blicks, C. Probiotics and oral health effects in children. Int. J. Paediatr. Dent.18, 3–10 (2008). PubMed Google Scholar
Wells, J. M. & Mercenier, A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature Rev. Microbiol.6, 349–362 (2008). ArticleCAS Google Scholar
Gaspari, A., Tyring, S. K. & Rosen, T. Beyond a decade of 5% imiquimod topical therapy. J. Drugs Dermatol.8, 467–474 (2009). A recent summary of the applications of the TLR7 agonist imiquimod, one of the most widely used TLR agonists in the clinic. Google Scholar
Harper, D. M. et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet367, 1247–1255 (2006). A report detailing the successful clinical trials of a human papilloma virus vaccine that uses an adjuvant formulation, including the TLR4 agonist MPL. ArticleCASPubMed Google Scholar
Dubensky, T. W. Jr & Reed, S. G. Adjuvants for cancer vaccines. Semin. Immunol.22, 155–161 (2010). ArticleCASPubMed Google Scholar