The type II secretion system: biogenesis, molecular architecture and mechanism (original) (raw)
Wooldridge, K. Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis (Caister Academic Press, Norfolk, UK, 2009). Google Scholar
Sandkvist, M. et al. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J. Bacteriol.179, 6994–7003 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tauschek, M., Gorrell, R. J., Strugnell, R. A. & Robins-Browne, R. M. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc. Natl Acad. Sci. USA99, 7066–7071 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kulkarni, R. et al. Roles of putative type II secretion and type IV pilus systems in the virulence of uropathogenic Escherichia coli. PLoS ONE4, e4752 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Lathem, W. W. et al. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol. Microbiol.45, 277–288 (2002). ArticleCASPubMed Google Scholar
Bally, M. et al. Protein secretion in Pseudomonas aeruginosa: characterization of seven xcp genes and processing of secretory apparatus components by prepilin peptidase. Mol. Microbiol.6, 1121–1131 (1992). ArticleCASPubMed Google Scholar
Jyot, J. et al. Type II secretion system of Pseudomonas aeruginosa: in vivo evidence of a significant role in death due to lung infection. J. Infect. Dis.203, 1369–1377 (2011). ArticleCASPubMedPubMed Central Google Scholar
d'Enfert, C. & Pugsley, A. P. Klebsiella pneumoniae pulS gene encodes an outer membrane lipoprotein required for pullulanase secretion. J. Bacteriol.171, 3673–3679 (1989). ArticleCASPubMedPubMed Central Google Scholar
Possot, O. & Pugsley, A. P. Molecular characterization of PulE, a protein required for pullulanase secretion. Mol. Microbiol.12, 287–299 (1994). ArticleCASPubMed Google Scholar
Rossier, O., Starkenburg, S. R. & Cianciotto, N. P. Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires' disease pneumonia. Infect. Immun.72, 310–321 (2004). ArticleCASPubMedPubMed Central Google Scholar
Iwobi, A. et al. Novel virulence-associated type II secretion system unique to high-pathogenicity Yersinia enterocolitica. Infect. Immun.71, 1872–1879 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jiang, B. & Howard, S. P. The Aeromonas hydrophila exeE gene, required both for protein secretion and normal outer membrane biogenesis, is a member of a general secretion pathway. Mol. Microbiol.6, 1351–1361 (1992). ArticleCASPubMed Google Scholar
Toth, I. K. & Birch, P. R. Rotting softly and stealthily. Curr. Opin. Plant Biol.8, 424–429 (2005). ArticleCASPubMed Google Scholar
Jha, G., Rajeshwari, R. & Sonti, R. V. Bacterial type two secretion system secreted proteins: double-edged swords for plant pathogens. Mol. Plant Microbe Interact.18, 891–898 (2005). ArticleCASPubMed Google Scholar
Shi, L. et al. Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J. Bacteriol.190, 5512–5516 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hobbs, M. & Mattick, J. S. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol. Microbiol.10, 233–243 (1993). ArticleCASPubMed Google Scholar
Peabody, C. R. et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology149, 3051–3072 (2003). ArticleCASPubMed Google Scholar
Ghosh, A. & Albers, S. V. Assembly and function of the archaeal flagellum. Biochem. Soc. Trans.39, 64–69 (2011). ArticleCASPubMed Google Scholar
Pugsley, A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev.57, 50–108 (1993). CASPubMedPubMed Central Google Scholar
Sauvonnet, N., Vignon, G., Pugsley, A. P. & Gounon, P. Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J.19, 2221–2228 (2000). The first study to show that pseudopilins can assemble into pilus-like structures when overexpressed. ArticleCASPubMedPubMed Central Google Scholar
Durand, E. et al. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J. Bacteriol.185, 2749–2758 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hu, N. T. et al. XpsG, the major pseudopilin in Xanthomonas campestris pv. campestris, forms a pilus-like structure between cytoplasmic and outer membranes. Biochem. J.365, 205–211 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chami, M. et al. Structural insights into the secretin PulD and its trypsin-resistant core. J. Biol. Chem.280, 37732–37741 (2005). ArticleCASPubMed Google Scholar
Reichow, S. L., Korotkov, K. V., Hol, W. G. J. & Gonen, T. Structure of the cholera toxin secretion channel in its closed state. Nature Struct. Mol. Biol.17, 1226–1232 (2010). The electron microscopy reconstruction of a T2SS secretin with the highest resolution to date. ArticleCAS Google Scholar
Korotkov, K. V., Gonen, T. & Hol, W. G. J. Secretins: dynamic channels for protein transport across membranes. Trends Biochem. Sci.36, 433–443 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bleves, S., Lazdunski, A. & Filloux, A. Membrane topology of three Xcp proteins involved in exoprotein transport by Pseudomonas aeruginosa. J. Bacteriol.178, 4297–4300 (1996). ArticleCASPubMedPubMed Central Google Scholar
Thomas, J. D., Reeves, P. J. & Salmond, G. P. The general secretion pathway of Erwinia carotovora subsp. carotovora: analysis of the membrane topology of OutC and OutF. Microbiology143, 713–720 (1997). ArticleCASPubMed Google Scholar
Francetic, O., Buddelmeijer, N., Lewenza, S., Kumamoto, C. A. & Pugsley, A. P. Signal recognition particle-dependent inner membrane targeting of the PulG pseudopilin component of a type II secretion system. J. Bacteriol.189, 1783–1793 (2007). ArticleCASPubMed Google Scholar
Arts, J., van Boxtel, R., Filloux, A., Tommassen, J. & Koster, M. Export of the pseudopilin XcpT of the Pseudomonas aeruginosa type II secretion system via the signal recognition particle-Sec pathway. J. Bacteriol.189, 2069–2076 (2007). ArticleCASPubMed Google Scholar
Nunn, D. N. & Lory, S. Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc. Natl Acad. Sci. USA88, 3281–3285 (1991). ArticleCASPubMedPubMed Central Google Scholar
Strom, M. S., Nunn, D. N. & Lory, S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl Acad. Sci. USA90, 2404–2408 (1993). ArticleCASPubMedPubMed Central Google Scholar
Nunn, D. N. & Lory, S. Components of the protein-excretion apparatus of Pseudomonas aeruginosa are processed by the type IV prepilin peptidase. Proc. Natl Acad. Sci. USA89, 47–51 (1992). ArticleCASPubMedPubMed Central Google Scholar
LaPointe, C. F. & Taylor, R. K. The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J. Biol. Chem.275, 1502–1510 (2000). ArticleCASPubMed Google Scholar
Bleves, S. et al. The secretion apparatus of Pseudomonas aeruginosa: identification of a fifth pseudopilin, XcpX (GspK family). Mol. Microbiol.27, 31–40 (1998). ArticleCASPubMed Google Scholar
Craig, L. et al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell23, 651–662 (2006). ArticleCASPubMed Google Scholar
Korotkov, K. V. & Hol, W. G. J. Structure of the GspK–GspI–GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nature Struct. Mol. Biol.15, 462–468 (2008). A report providing structural evidence for the quasihelical parameters of the pseudopilus tip. ArticleCAS Google Scholar
Campos, M., Nilges, M., Cisneros, D. A. & Francetic, O. Detailed structural and assembly model of the type II secretion pilus from sparse data. Proc. Natl Acad. Sci. USA107, 13081–13086 (2010). A description of a pseudopilus model that combines experimental data and modelling methods. ArticleCASPubMedPubMed Central Google Scholar
Douzi, B. et al. The XcpV/GspI pseudopilin has a central role in the assembly of a quaternary complex within the T2SS pseudopilus. J. Biol. Chem.284, 34580–34589 (2009). A study describing the interaction network of pseudopilins. ArticleCASPubMedPubMed Central Google Scholar
Schraidt, O. & Marlovits, T. C. Three-dimensional model of Salmonella's needle complex at subnanometer resolution. Science331, 1192–1195 (2011). ArticleCASPubMed Google Scholar
Collins, R. F. et al. Three-dimensional structure of the Neisseria meningitidis secretin PilQ determined from negative-stain transmission electron microscopy. J. Bacteriol.185, 2611–2617 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jain, S. et al. Structural characterization of outer membrane components of the type IV pili system in pathogenic Neisseria. PLoS ONE6, e16624 (2011). ArticleCASPubMedPubMed Central Google Scholar
Burkhardt, J., Vonck, J. & Averhoff, B. Structure and function of PilQ, a secretin of the DNA transporter from the thermophilic bacterium Thermus thermophilus HB27. J. Biol. Chem.286, 9977–9984 (2011). ArticleCASPubMedPubMed Central Google Scholar
Opalka, N. et al. Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J. Mol. Biol.325, 461–470 (2003). ArticleCASPubMed Google Scholar
Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science299, 262–265 (2003). ArticleCASPubMed Google Scholar
Knowles, T. J., Scott-Tucker, A., Overduin, M. & Henderson, I. R. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nature Rev. Microbiol.7, 206–214 (2009). ArticleCAS Google Scholar
Collin, S., Guilvout, I., Chami, M. & Pugsley, A. P. YaeT-independent multimerization and outer membrane association of secretin PulD. Mol. Microbiol.64, 1350–1357 (2007). ArticleCASPubMed Google Scholar
Hardie, K. R., Lory, S. & Pugsley, A. P. Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J.15, 978–988 (1996). ArticleCASPubMedPubMed Central Google Scholar
Shevchik, V. E., Robert-Baudouy, J. & Condemine, G. Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. EMBO J.16, 3007–3016 (1997). ArticleCASPubMedPubMed Central Google Scholar
Daefler, S., Guilvout, I., Hardie, K. R., Pugsley, A. P. & Russel, M. The C-terminal domain of the secretin PulD contains the binding site for its cognate chaperone, PulS, and confers PulS dependence on pIVf1 function. Mol. Microbiol.24, 465–475 (1997). ArticleCASPubMed Google Scholar
Nickerson, N. N. et al. Outer membrane targeting of secretin PulD relies on disordered domain recognition by a dedicated chaperone. J. Biol. Chem.286, 38833–38843 (2011). ArticleCASPubMedPubMed Central Google Scholar
Collin, S., Guilvout, I., Nickerson, N. N. & Pugsley, A. P. Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin. Mol. Microbiol.80, 655–665 (2011). ArticleCASPubMed Google Scholar
Viarre, V. et al. HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor. J. Biol. Chem.284, 33815–33823 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hu, N. T., Hung, M. N., Liao, C. T. & Lin, M. H. Subcellular location of XpsD, a protein required for extracellular protein secretion by Xanthomonas campestris pv. campestris. Microbiology141, 1395–1406 (1995). ArticleCASPubMed Google Scholar
Li, G. & Howard, S. P. ExeA binds to peptidoglycan and forms a multimer for assembly of the type II secretion apparatus in Aeromonas hydrophila. Mol. Microbiol.76, 772–781 (2010). ArticleCASPubMed Google Scholar
Li, G., Miller, A., Bull, H. & Howard, S. P. Assembly of the type II secretion system: identification of ExeA residues critical for peptidoglycan binding and secretin multimerization. J. Bacteriol.193, 197–204 (2011). ArticleCASPubMed Google Scholar
Strozen, T. G. et al. Involvement of the GspAB complex in assembly of the type II secretion system secretin of Aeromonas and Vibrio species. J. Bacteriol.193, 2322–2331 (2011). ArticleCASPubMedPubMed Central Google Scholar
Seo, J., Brencic, A. & Darwin, A. J. Analysis of secretin-induced stress in Pseudomonas aeruginosa suggests prevention rather than response and identifies a novel protein involved in secretin function. J. Bacteriol.191, 898–908 (2009). ArticleCASPubMed Google Scholar
Planet, P. J., Kachlany, S. C., DeSalle, R. & Figurski, D. H. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc. Natl Acad. Sci. USA98, 2503–2508 (2001). ArticleCASPubMedPubMed Central Google Scholar
Possot, O. M. & Pugsley, A. P. The conserved tetracysteine motif in the general secretory pathway component PulE is required for efficient pullulanase secretion. Gene192, 45–50 (1997). ArticleCASPubMed Google Scholar
Robien, M. A., Krumm, B. E., Sandkvist, M. & Hol, W. G. J. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J. Mol. Biol.333, 657–674 (2003). ArticleCASPubMed Google Scholar
Camberg, J. L. & Sandkvist, M. Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J. Bacteriol.187, 249–256 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hare, S. et al. Identification, structure and mode of action of a new regulator of the Helicobacter pylori HP0525 ATPase. EMBO J.26, 4926–4934 (2007). ArticleCASPubMedPubMed Central Google Scholar
Misic, A. M., Satyshur, K. A. & Forest, K. T. P. aeruginosa PilT structures with and without nucleotide reveal a dynamic type IV pilus retraction motor. J. Mol. Biol.400, 1011–1021 (2010). A crystallography study showing that the PilT monomer, a homologue of GspE, exists in three different conformations within the hexamer. A dynamic 'ready, active, release' model for the action of PilT is proposed. ArticleCASPubMedPubMed Central Google Scholar
Camberg, J. L. et al. Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J.26, 19–27 (2007). ArticleCASPubMed Google Scholar
Patrick, M., Korotkov, K. V., Hol, W. G. J. & Sandkvist, M. Oligomerization of EpsE coordinates residues from multiple subunits to facilitate ATPase activity. J. Biol. Chem.286, 10378–10386 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sandkvist, M., Bagdasarian, M., Howard, S. P. & DiRita, V. J. Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J.14, 1664–1673 (1995). ArticleCASPubMedPubMed Central Google Scholar
Michel, G., Bleves, S., Ball, G., Lazdunski, A. & Filloux, A. Mutual stabilization of the XcpZ and XcpY components of the secretory apparatus in Pseudomonas aeruginosa. Microbiology144, 3379–3386 (1998). ArticleCASPubMed Google Scholar
Sandkvist, M., Hough, L. P., Bagdasarian, M. M. & Bagdasarian, M. Direct interaction of the EpsL and EpsM proteins of the general secretion apparatus in Vibrio cholerae. J. Bacteriol.181, 3129–3135 (1999). CASPubMedPubMed Central Google Scholar
Robert, V., Filloux, A. & Michel, G. P. Subcomplexes from the Xcp secretion system of Pseudomonas aeruginosa. FEMS Microbiol. Lett.252, 43–50 (2005). ArticleCASPubMed Google Scholar
Lybarger, S. R., Johnson, T. L., Gray, M. D., Sikora, A. E. & Sandkvist, M. Docking and assembly of the type II secretion complex of Vibrio cholerae. J. Bacteriol.191, 3149–3161 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gray, M. D., Bagdasarian, M., Hol, W. G. & Sandkvist, M. In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the type II secretion system of Vibrio cholerae. Mol. Microbiol.79, 786–798 (2011). A study describing the role of GspL as a connector between GspE and the pseudopilus. ArticleCASPubMedPubMed Central Google Scholar
Lee, H. M. et al. Association of the cytoplasmic membrane protein XpsN with the outer membrane protein XpsD in the type II protein secretion apparatus of Xanthomonas campestris pv. campestris. J. Bacteriol.182, 1549–1557 (2000). ArticleCASPubMedPubMed Central Google Scholar
Korotkov, K. V., Krumm, B., Bagdasarian, M. & Hol, W. G. J. Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. J. Mol. Biol.363, 311–321 (2006). ArticleCASPubMed Google Scholar
Login, F. H., Fries, M., Wang, X., Pickersgill, R. W. & Shevchik, V. E. A. 20-residue peptide of the inner membrane protein OutC mediates interaction with two distinct sites of the outer membrane secretin OutD and is essential for the functional type II secretion system in Erwinia chrysanthemi. Mol. Microbiol.76, 944–955 (2010). ArticleCASPubMed Google Scholar
Korotkov, K. V. et al. Structural and functional studies on the interaction of GspC and GspD in the type II secretion system. PLoS Pathog.7, e1002228 (2011). ArticleCASPubMedPubMed Central Google Scholar
Korotkov, K. V. et al. Calcium is essential for the major pseudopilin in the type 2 secretion system. J. Biol. Chem.284, 25466–25470 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yanez, M. E., Korotkov, K. V., Abendroth, J. & Hol, W. G. J. Structure of the minor pseudopilin EpsH from the type 2 secretion system of Vibrio cholerae. J. Mol. Biol.377, 91–103 (2008). ArticleCASPubMed Google Scholar
Yanez, M. E., Korotkov, K. V., Abendroth, J. & Hol, W. G. J. The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the type 2 secretion system of Vibrio vulnificus. J. Mol. Biol.375, 471–486 (2008). ArticleCASPubMed Google Scholar
Franz, L. P. et al. Structure of the minor pseudopilin XcpW from the Pseudomonas aeruginosa type II secretion system. Acta Crystallogr. D Biol. Crystallogr.67, 124–130 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pugsley, A. P., Bayan, N. & Sauvonnet, N. Disulfide bond formation in secreton component PulK provides a possible explanation for the role of DsbA in pullulanase secretion. J. Bacteriol.183, 1312–1319 (2001). ArticleCASPubMedPubMed Central Google Scholar
Vignon, G. et al. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol.185, 3416–3428 (2003). ArticleCASPubMedPubMed Central Google Scholar
Durand, E. et al. XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus. J. Biol. Chem.280, 31378–31389 (2005). ArticleCASPubMed Google Scholar
Cisneros, D. A., Bond, P. J., Pugsley, A. P., Campos, M. & Francetic, O. Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J.31, 1041–1053 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Köhler, R. et al. Structure and assembly of the pseudopilin PulG. Mol. Microbiol.54, 647–664 (2004). ArticlePubMedCAS Google Scholar
Campos, M., Francetic, O. & Nilges, M. Modeling pilus structures from sparse data. J. Struct. Biol.173, 436–444 (2011). ArticleCASPubMed Google Scholar
Biais, N., Higashi, D. L., Brujic, J., So, M. & Sheetz, M. P. Force-dependent polymorphism in type IV pili reveals hidden epitopes. Proc. Natl Acad. Sci. USA107, 11358–11363 (2010). ArticleCASPubMedPubMed Central Google Scholar
Forero, M., Yakovenko, O., Sokurenko, E. V., Thomas, W. E. & Vogel, V. Uncoiling mechanics of Escherichia coli type I fimbriae are optimized for catch bonds. PLoS Biol.4, e298 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Korotkov, K. V., Pardon, E., Steyaert, J. & Hol, W. G. J. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure17, 255–265 (2009). The first report of high-resolution structures of T2SS secretin domains. ArticleCASPubMedPubMed Central Google Scholar
Garcia-Herrero, A. & Vogel, H. J. Nuclear magnetic resonance solution structure of the periplasmic signalling domain of the TonB-dependent outer membrane transporter FecA from Escherichia coli. Mol. Microbiol.58, 1226–1237 (2005). ArticleCASPubMed Google Scholar
Nakano, N., Kubori, T., Kinoshita, M., Imada, K. & Nagai, H. Crystal structure of Legionella DotD: insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog.6, e1001129 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA106, 4154–4159 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kanamaru, S. et al. Structure of the cell-puncturing device of bacteriophage T4. Nature415, 553–557 (2002). ArticleCASPubMed Google Scholar
Valverde, R., Edwards, L. & Regan, L. Structure and function of KH domains. FEBS J.275, 2712–2726 (2008). ArticleCASPubMed Google Scholar
Guilvout, I., Hardie, K. R., Sauvonnet, N. & Pugsley, A. P. Genetic dissection of the outer membrane secretin PulD: Are there distinct domains for multimerization and secretion specificity? J. Bacteriol.181, 7212–7220 (1999). CASPubMedPubMed Central Google Scholar
Tosi, T. et al. Pilotin-secretin recognition in the type II secretion system of Klebsiella oxytoca. Mol. Microbiol.82, 1422–1432 (2011). ArticleCASPubMed Google Scholar
Izore, T. et al. Structural characterization and membrane localization of ExsB from the type III secretion system (T3SS) of Pseudomonas aeruginosa. J. Mol. Biol.413, 236–246 (2011). ArticleCASPubMed Google Scholar
Kim, K. et al. Crystal structure of PilF: functional implication in the type 4 pilus biogenesis in Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun.340, 1028–1038 (2006). ArticleCASPubMed Google Scholar
Koo, J. et al. PilF is an outer membrane lipoprotein required for multimerization and localization of the Pseudomonas aeruginosa type IV pilus secretin. J. Bacteriol.190, 6961–6969 (2008). ArticleCASPubMedPubMed Central Google Scholar
Trindade, M. B., Job, V., Contreras-Martel, C., Pelicic, V. & Dessen, A. Structure of a widely conserved type IV pilus biogenesis factor that affects the stability of secretin multimers. J. Mol. Biol.378, 1031–1039 (2008). ArticleCASPubMed Google Scholar
Nouwen, N. et al. Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc. Natl Acad. Sci. USA96, 8173–8177 (1999). ArticleCASPubMedPubMed Central Google Scholar
Turner, L. R., Lara, J. C., Nunn, D. N. & Lory, S. Mutations in the consensus ATP-binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in Pseudomonas aeruginosa. J. Bacteriol.175, 4962–4969 (1993). ArticleCASPubMedPubMed Central Google Scholar
Py, B., Loiseau, L. & Barras, F. Assembly of the type II secretion machinery of Erwinia chrysanthemi: direct interaction and associated conformational change between OutE, the putative ATP-binding component and the membrane protein OutL. J. Mol. Biol.289, 659–670 (1999). ArticleCASPubMed Google Scholar
Yeo, H. J., Savvides, S. N., Herr, A. B., Lanka, E. & Waksman, G. Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol. Cell6, 1461–1472 (2000). ArticleCASPubMed Google Scholar
Savvides, S. N. et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J.22, 1969–1980 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yamagata, A. & Tainer, J. A. Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. EMBO J.26, 878–890 (2007). ArticleCASPubMedPubMed Central Google Scholar
Satyshur, K. A. et al. Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility. Structure15, 363–376 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y. et al. Structure and function of the XpsE N-terminal domain, an essential component of the Xanthomonas campestris type II secretion system. J. Biol. Chem.280, 42356–42363 (2005). ArticleCASPubMed Google Scholar
Abendroth, J., Murphy, P., Sandkvist, M., Bagdasarian, M. & Hol, W. G. J. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J. Mol. Biol.348, 845–855 (2005). ArticleCASPubMed Google Scholar
Johnson, T. L., Abendroth, J., Hol, W. G. J. & Sandkvist, M. Type II secretion: from structure to function. FEMS Microbiol. Lett.255, 175–186 (2006). ArticleCASPubMed Google Scholar
Abendroth, J., Rice, A. E., McLuskey, K., Bagdasarian, M. & Hol, W. G. J. The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J. Mol. Biol.338, 585–596 (2004). ArticleCASPubMed Google Scholar
Abendroth, J., Bagdasarian, M., Sandkvist, M. & Hol, W. G. The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase superfamily. J. Mol. Biol.344, 619–633 (2004). ArticleCASPubMed Google Scholar
Karuppiah, V. & Derrick, J. P. Structure of the PilM-PilN inner membrane type, IV pilus biogenesis complex from Thermus thermophilus. J. Biol. Chem.286, 24434–24442 (2011). ArticleCASPubMedPubMed Central Google Scholar
Abendroth, J., Kreger, A. C. & Hol, W. G. J. The dimer formed by the periplasmic domain of EpsL from the Type 2 Secretion System of Vibrio parahaemolyticus. J. Struct. Biol.168, 313–322 (2009). ArticleCASPubMedPubMed Central Google Scholar
Abendroth, J. et al. The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of Vibrio cholerae. J. Struct. Biol.166, 303–315 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bleves, S., Gerard-Vincent, M., Lazdunski, A. & Filloux, A. Structure-function analysis of XcpP, a component involved in general secretory pathway-dependent protein secretion in Pseudomonas aeruginosa. J. Bacteriol.181, 4012–4019 (1999). CASPubMedPubMed Central Google Scholar
Gerard-Vincent, M. et al. Identification of XcpP domains that confer functionality and specificity to the Pseudomonas aeruginosa type II secretion apparatus. Mol. Microbiol.44, 1651–1665 (2002). ArticleCASPubMed Google Scholar
Bouley, J., Condemine, G. & Shevchik, V. E. The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi. J. Mol. Biol.308, 205–219 (2001). Swapping of domains in either GspC or the secretin results in the secretion of heterologous exoproteins and identifies domains within the T2SS that determine secretion specificity. ArticleCASPubMed Google Scholar
Kagami, Y., Ratliff, M., Surber, M., Martinez, A. & Nunn, D. N. Type II protein secretion by Pseudomonas aeruginosa: genetic suppression of a conditional mutation in the pilin-like component XcpT by the cytoplasmic component XcpR. Mol. Microbiol.27, 221–233 (1998). ArticleCASPubMed Google Scholar
Douet, V., Loiseau, L., Barras, F. & Py, B. Systematic analysis, by the yeast two-hybrid, of protein interaction between components of the type II secretory machinery of Erwinia chrysanthemi. Res. Microbiol.55, 71–75 (2004). ArticleCAS Google Scholar
Douzi, B., Ball, G., Cambillau, C., Tegoni, M. & Voulhoux, R. Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates. J. Biol. Chem.286, 40792–40801 (2011). Surface plasmon resonance experiments indicate that there are multiple interactions between secreted exoproteins and both GspC and the pseudopilus tip. ArticleCASPubMedPubMed Central Google Scholar
Voulhoux, R. et al. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J.20, 6735–6741 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hirst, T. R. & Holmgren, J. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae. Proc. Natl Acad. Sci. USA84, 7418–7422 (1987). The first study to show that proteins to be secreted via the T2SS have already folded into tertiary and even quaternary conformations. ArticleCASPubMedPubMed Central Google Scholar
Poquet, I., Faucher, D. & Pugsley, A. P. Stable periplasmic secretion intermediate in the general secretory pathway of Escherichia coli. EMBO J.12, 271–278 (1993). ArticleCASPubMedPubMed Central Google Scholar
Reichow, S. L. et al. The binding of cholera toxin to the periplasmic vestibule of the type II secretion channel. Channels (Austin)5, 215–218 (2011). ArticleCAS Google Scholar
Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature407, 98–102 (2000). ArticleCASPubMed Google Scholar
Bortoli-German, I., Brun, E., Py, B., Chippaux, M. & Barras, F. Periplasmic disulphide bond formation is essential for cellulase secretion by the plant pathogen Erwinia chrysanthemi. Mol. Microbiol.11, 545–553 (1994). ArticleCASPubMed Google Scholar
Hardie, K. R., Schulze, A., Parker, M. W. & Buckley, J. T. Vibrio spp. secrete proaerolysin as a folded dimer without the need for disulphide bond formation. Mol. Microbiol.17, 1035–1044 (1995). ArticleCASPubMed Google Scholar
Shevchik, V. E. et al. Differential effect of dsbA and dsbC mutations on extracellular enzyme secretion in Erwinia chrysanthemi. Mol. Microbiol.16, 745–753 (1995). ArticleCASPubMed Google Scholar
Chapon, V., Simpson, H. D., Morelli, X., Brun, E. & Barras, F. Alteration of a single tryptophan residue of the cellulose-binding domain blocks secretion of the Erwinia chrysanthemi Cel5 cellulase (ex-EGZ) via the type II system. J. Mol. Biol.303, 117–123 (2000). ArticleCASPubMed Google Scholar
DebRoy, S., Dao, J., Soderberg, M., Rossier, O. & Cianciotto, N. P. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc. Natl Acad. Sci. USA103, 19146–19151 (2006). ArticleCASPubMedPubMed Central Google Scholar
Coulthurst, S. J. et al. DsbA plays a critical and multifaceted role in the production of secreted virulence factors by the phytopathogen Erwinia carotovora subsp. atroseptica. J. Biol. Chem.283, 23739–23753 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sikora, A. E., Zielke, R. A., Lawrence, D. A., Andrews, P. C. & Sandkvist, M. Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins including three related serine proteases. J. Biol. Chem.286, 16555–16566 (2011). ArticleCASPubMedPubMed Central Google Scholar
Varga, J. J. et al. Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Mol. Microbiol.62, 680–694 (2006). ArticleCASPubMed Google Scholar
Sampaleanu, L. M. et al. Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex. J. Mol. Biol.394, 143–159 (2009). ArticleCASPubMed Google Scholar
Connell, T. D., Metzger, D. J., Wang, M., Jobling, M. G. & Holmes, R. K. Initial studies of the structural signal for extracellular transport of cholera toxin and other proteins recognized by Vibrio cholerae. Infect. Immun.63, 4091–4098 (1995). CASPubMedPubMed Central Google Scholar
Lu, H. M. & Lory, S. A specific targeting domain in mature exotoxin A is required for its extracellular secretion from Pseudomonas aeruginosa. EMBO J.15, 429–436 (1996). ArticleCASPubMedPubMed Central Google Scholar
Palomaki, T., Pickersgill, R., Riekki, R., Romantschuk, M. & Saarilahti, H. T. A putative three-dimensional targeting motif of polygalacturonase (PehA), a protein secreted through the type II (GSP) pathway in Erwinia carotovora. Mol. Microbiol.43, 585–596 (2002). ArticleCASPubMed Google Scholar
Folster, J. P. & Connell, T. D. The extracellular transport signal of the Vibrio cholerae endochitinase (ChiA) is a structural motif located between amino acids 75 and 555. J. Bacteriol.184, 2225–2234 (2002). ArticleCASPubMedPubMed Central Google Scholar
Francetic, O. & Pugsley, A. P. Towards the identification of type II secretion signals in a nonacylated variant of pullulanase from Klebsiella oxytoca. J. Bacteriol.187, 7045–7055 (2005). ArticleCASPubMedPubMed Central Google Scholar
O.'Neal, C. J., Amaya, E. I., Jobling, M. G., Holmes, R. K. & Hol, W. G. J. Crystal structures of an intrinsically active cholera toxin mutant yield insight into the toxin activation mechanism. Biochemistry43, 3772–3782 (2004). ArticleCAS Google Scholar
Songsiriritthigul, C., Pantoom, S., Aguda, A. H., Robinson, R. C. & Suginta, W. Crystal structures of Vibrio harveyi chitinase A complexed with chitooligosaccharides: implications for the catalytic mechanism. J. Struct. Biol.162, 491–499 (2008). ArticleCASPubMed Google Scholar
Moustafa, I. et al. Sialic acid recognition by Vibrio cholerae neuraminidase. J. Biol. Chem.279, 40819–40826 (2004). ArticleCASPubMed Google Scholar
Thayer, M. M., Flaherty, K. M. & McKay, D. B. Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-Å resolution. J. Biol. Chem.266, 2864–2871 (1991). CASPubMed Google Scholar
Wedekind, J. E. et al. Refined crystallographic structure of Pseudomonas aeruginosa exotoxin A and its implications for the molecular mechanism of toxicity. J. Mol. Biol.314, 823–837 (2001). ArticleCASPubMed Google Scholar
Parker, M. W. et al. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature367, 292–295 (1994). ArticleCASPubMed Google Scholar
Pauwels, K. et al. Structure of a membrane-based steric chaperone in complex with its lipase substrate. Nature Struct. Mol. Biol.13, 374–375 (2006). ArticleCAS Google Scholar
Yoder, M. D. & Jurnak, F. Protein motifs. 3. The parallel β helix and other coiled folds. FASEB J.9, 335–342 (1995). ArticleCASPubMed Google Scholar
Creze, C. et al. The crystal structure of pectate lyase peli from soft rot pathogen Erwinia chrysanthemi in complex with its substrate. J. Biol. Chem.283, 18260–18268 (2008). ArticleCASPubMed Google Scholar
Chapon, V. et al. Type II protein secretion in gram-negative pathogenic bacteria: the study of the structure/secretion relationships of the cellulase Cel5 (formerly EGZ) from Erwinia chrysanthemi. J. Mol. Biol.310, 1055–1066 (2001). ArticleCASPubMed Google Scholar
Mikami, B. et al. Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J. Mol. Biol.359, 690–707 (2006). ArticleCASPubMed Google Scholar
Urban, A., Leipelt, M., Eggert, T. & Jaeger, K. E. DsbA and DsbC affect extracellular enzyme formation in Pseudomonas aeruginosa. J. Bacteriol.183, 587–596 (2001). ArticleCASPubMedPubMed Central Google Scholar
Tokuda, H. Biogenesis of outer membranes in Gram-negative bacteria. Biosci. Biotechnol. Biochem.73, 465–473 (2009). ArticleCASPubMed Google Scholar
Py, B., Loiseau, L. & Barras, F. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep.2, 244–248 (2001). ArticleCASPubMedPubMed Central Google Scholar
DeShazer, D., Brett, P. J., Burtnick, M. N. & Woods, D. E. Molecular characterization of genetic loci required for secretion of exoproducts in Burkholderia pseudomallei. J. Bacteriol.181, 4661–4664 (1999). CASPubMedPubMed Central Google Scholar
Possot, O. M., Vignon, G., Bomchil, N., Ebel, F. & Pugsley, A. P. Multiple interactions between pullulanase secreton components involved in stabilization and cytoplasmic membrane association of PulE. J. Bacteriol.182, 2142–2152 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lam, A. Y., Pardon, E., Korotkov, K. V., Hol, W. G. J. & Steyaert, J. Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus. J. Struct. Biol.166, 8–15 (2009). ArticleCASPubMed Google Scholar
Alphonse, S. et al. Structure of the Pseudomonas aeruginosa XcpT pseudopilin, a major component of the type II secretion system. J. Struct. Biol.169, 75–80 (2009). ArticlePubMedCAS Google Scholar
Ferrandez, Y. & Condemine, G. Novel mechanism of outer membrane targeting of proteins in Gram-negative bacteria. Mol. Microbiol.69, 1349–1357 (2008). ArticleCASPubMed Google Scholar