Westra, E. R. et al. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu. Rev. Genet.46, 311–339 (2012). CASPubMed Google Scholar
Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nature Rev. Microbiol.8, 317–327 (2010). CAS Google Scholar
Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature482, 331–338 (2012). CASPubMed Google Scholar
Makarova, K. S. et al. Evolution and classification of the CRISPR–Cas systems. Nature Rev. Microbiol.9, 467–477 (2011). CAS Google Scholar
Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science315, 1709–1712 (2007). CASPubMed Google Scholar
Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science320, 1047–1050 (2008). CASPubMed Google Scholar
Tyson, G. W. & Banfield, J. F. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ. Microbiol.10, 200–207 (2008). CASPubMed Google Scholar
Emerson, J. B. et al. Virus–host and CRISPR dynamics in archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia. Archaea2013, 370871 (2013). PubMedPubMed Central Google Scholar
Delaney, N. F. et al. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet.8, e1002511 (2012). CASPubMedPubMed Central Google Scholar
Diez-Villasenor, C., Almendros, C., Garcia-Martinez, J. & Mojica, F. J. Diversity of CRISPR loci in Escherichia coli. Microbiology156, 1351–1361 (2010). CASPubMed Google Scholar
Pougach, K. et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol. Microbiol.77, 1367–1379 (2010). CASPubMedPubMed Central Google Scholar
Westra, E. R. et al. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol. Microbiol.77, 1380–1393 (2010). CASPubMed Google Scholar
Pul, U. et al. Identification and characterization of E. coli CRISPR–Cas promoters and their silencing by H-NS. Mol. Microbiol.75, 1495–1512 (2010). CASPubMed Google Scholar
Touchon, M. et al. CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection. J. Bacteriol.193, 2460–2467 (2011). CASPubMedPubMed Central Google Scholar
Touchon, M. & Rocha, E. P. The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PLoS ONE5, e11126 (2010). PubMedPubMed Central Google Scholar
Touchon, M. et al. Antibiotic resistance plasmids spread among natural isolates of Escherichia coli in spite of CRISPR elements. Microbiology158, 2997–3004 (2012). CASPubMed Google Scholar
Kaiser, D., Robinson, M. & Kroos, L. Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb. Perspect. Biol.2, a000380 (2010). PubMedPubMed Central Google Scholar
Thony-Meyer, L. & Kaiser, D. devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J. Bacteriol.175, 7450–7462 (1993). CASPubMedPubMed Central Google Scholar
Boysen, A., Ellehauge, E., Julien, B. & Sogaard-Andersen, L. The DevT protein stimulates synthesis of FruA, a signal transduction protein required for fruiting body morphogenesis in Myxococcus xanthus. J. Bacteriol.184, 1540–1546 (2002). CASPubMedPubMed Central Google Scholar
Viswanathan, P., Murphy, K., Julien, B., Garza, A. G. & Kroos, L. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J. Bacteriol.189, 3738–3750 (2007). CASPubMedPubMed Central Google Scholar
Kroos, L. & Kaiser, D. Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Dev.1, 840–854 (1987). CASPubMed Google Scholar
Kroos, L., Kuspa, A. & Kaiser, D. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol.117, 252–266 (1986). CASPubMed Google Scholar
Russo-Marie, F., Roederer, M., Sager, B., Herzenberg, L. A. & Kaiser, D. Beta-galactosidase activity in single differentiating bacterial cells. Proc. Natl Acad. Sci. USA90, 8194–8198 (1993). CASPubMed Google Scholar
Julien, B., Kaiser, A.D. & Garza, A. Spatial control of cell differentiation in Myxococcus xanthus. Proc. Natl Acad. Sci. USA97, 9098–9103 (2000). CASPubMed Google Scholar
Louwen, R. et al. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre syndrome. Eur. J. Clin. Microbiol. Infect. Dis.32, 207–226 (2013). CASPubMed Google Scholar
Sampson, T. R., Saroj, S. D., Llewellyn, A. C., Tzeng, Y. L. & Weiss, D. S. A. CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature497, 254–257 (2013). CASPubMedPubMed Central Google Scholar
Deltcheva, E. et al. CRISPR RNA maturation by _trans_-encoded small RNA and host factor RNase III. Nature471, 602–607 (2011). CASPubMedPubMed Central Google Scholar
Chylinski, K., Le Rhun, A. & Charpentier, E. The tracrRNA and Cas9 families of type II CRISPR–Cas immunity systems. RNA Biol.10, 726–737 (2013). CASPubMedPubMed Central Google Scholar
Gunderson, F. F. & Cianciotto, N. P. The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. mBio4, e00074–13 (2013). PubMedPubMed Central Google Scholar
Beloglazova, N. et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem.283, 20361–20371 (2008). CASPubMedPubMed Central Google Scholar
Toledo-Arana, A. et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature459, 950–956 (2009). CASPubMed Google Scholar
Mandin, P., Repoila, F., Vergassola, M., Geissmann, T. & Cossart, P. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res.35, 962–974 (2007). CASPubMedPubMed Central Google Scholar
Vercoe, R. B. et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet.9, e1003454 (2013). CASPubMedPubMed Central Google Scholar
Edgar, R. & Qimron, U. The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction. J. Bacteriol.192, 6291–6294 (2010). CASPubMedPubMed Central Google Scholar
Semenova, E. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl Acad. Sci. USA108, 10098–10103 (2011). CASPubMed Google Scholar
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337, 816–821 (2012). CASPubMedPubMed Central Google Scholar
Cady, K. C. & O'Toole, G. A. Non-identity-mediated CRISPR–bacteriophage interaction mediated via the Csy and Cas3 proteins. J. Bacteriol.193, 3433–3445 (2011). CASPubMedPubMed Central Google Scholar
Zegans, M. E. et al. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J. Bacteriol.191, 210–219 (2009). CASPubMed Google Scholar
Cady, K. C., Bondy-Denomy, J., Heussler, G. E., Davidson, A. R. & O'Toole, G. A. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol.194, 5728–5738 (2012). CASPubMedPubMed Central Google Scholar
Staals, R. H. et al. Structure and activity of the RNA-targeting type III-B CRISPR–Cas complex of Thermus thermophilus. Mol. Cell52, 135–145 (2013). CASPubMedPubMed Central Google Scholar
Zhang, J. et al. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol. Cell45, 303–313 (2012). CASPubMedPubMed Central Google Scholar
Hale, C. R. et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol. Cell45, 292–302 (2012). CASPubMedPubMed Central Google Scholar
Zebec, Z., Manica, A., Zhang, J., White, M.F. & Schleper, C. CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Res.http://dx.doi.org/10.1093/nar/gku161 (2014).
Stern, A., Keren, L., Wurtzel, O., Amitai, G. & Sorek, R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet.26, 335–340 (2010). CASPubMedPubMed Central Google Scholar
Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature463, 568–571 (2010). CASPubMedPubMed Central Google Scholar
Sashital, D. G., Wiedenheft, B. & Doudna, J. A. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell46, 606–615 (2012). CASPubMedPubMed Central Google Scholar
Westra, E. R. et al. Type I-E CRISPR–Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet.9, e1003742 (2013). CASPubMedPubMed Central Google Scholar
Brodt, A., Lurie-Weinberger, M. N. & Gophna, U. CRISPR loci reveal networks of gene exchange in archaea. Biol. Direct6, 65 (2011). CASPubMedPubMed Central Google Scholar
Pleckaityte, M., Zilnyte, M. & Zvirbliene, A. Insights into the CRISPR/Cas system of Gardnerella vaginalis. BMC Microbiol.12, 301 (2012). CASPubMedPubMed Central Google Scholar
Yosef, I., Goren, M. G. & Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res.40, 5569–5576 (2012). CASPubMedPubMed Central Google Scholar
DeBoy, R. T., Mongodin, E. F., Emerson, J. B. & Nelson, K. E. Chromosome evolution in the Thermotogales: large-scale inversions and strain diversification of CRISPR sequences. J. Bacteriol.188, 2364–2374 (2006). CASPubMedPubMed Central Google Scholar
Riehle, M. M., Bennett, A. F. & Long, A. D. Genetic architecture of thermal adaptation in Escherichia coli. Proc. Natl Acad. Sci. USA98, 525–530 (2001). CASPubMed Google Scholar
Aklujkar, M. & Lovley, D. R. Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus. BMC Evol. Biol.10, 230 (2010). PubMedPubMed Central Google Scholar
Jorth, P. & Whiteley, M. An evolutionary link between natural transformation and CRISPR adaptive immunity. mBio3, e00309–12 (2012). CASPubMedPubMed Central Google Scholar
Babu, M. et al. A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair. Mol. Microbiol.79, 484–502 (2011). CASPubMed Google Scholar
Wiedenheft, B. et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure17, 904–912 (2009). CASPubMed Google Scholar
Mojica, F. J., Ferrer, C., Juez, G. & Rodriguez-Valera, F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol.17, 85–93 (1995). CASPubMed Google Scholar
Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B. & Koonin, E. V. A. DNA repair system specific for thermophilic archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res.30, 482–496 (2002). CASPubMedPubMed Central Google Scholar
Williams, E., Lowe, T. M., Savas, J. & DiRuggiero, J. Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation. Extremophiles11, 19–29 (2007). CASPubMed Google Scholar
Godde, J. S. & Bickerton, A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol.62, 718–729 (2006). CASPubMed Google Scholar
Minot, S. et al. Rapid evolution of the human gut virome. Proc. Natl Acad. Sci. USA110, 12450–12455 (2013). CASPubMed Google Scholar
Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res.21, 1616–1625 (2011). CASPubMedPubMed Central Google Scholar
Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature Genet.38, 779–786 (2006). PubMed Google Scholar
Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature494, 489–491 (2013). CASPubMedPubMed Central Google Scholar
Novick, R. P., Christie, G. E. & Penades, J. R. The phage-related chromosomal islands of Gram-positive bacteria. Nature Rev. Microbiol.8, 541–551 (2010). CAS Google Scholar
Makarova, K. S., Anantharaman, V., Aravind, L. & Koonin, E. V. Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol. Direct7, 40 (2012). CASPubMedPubMed Central Google Scholar
Cook, G. M. et al. Ribonucleases in bacterial toxin–antitoxin systems. Biochim. Biophys. Acta1829, 523–531 (2013). CASPubMed Google Scholar
Fineran, P. C. et al. The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc. Natl Acad. Sci. USA106, 894–899 (2009). CASPubMed Google Scholar
Blower, T. R. et al. A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nature Struct. Mol. Biol.18, 185–190 (2011). CAS Google Scholar
Kwon, A. R. et al. Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease activity. Nucleic Acids Res.40, 4216–4228 (2012). CASPubMedPubMed Central Google Scholar
Daines, D. A., Jarisch, J. & Smith, A. L. Identification and characterization of a nontypeable Haemophilus influenzae putative toxin–antitoxin locus. BMC Microbiol.4, 30 (2004). PubMedPubMed Central Google Scholar
Richter, C., Gristwood, T., Clulow, J. S. & Fineran, P. C. In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas system. PLoS ONE7, e49549 (2012). CASPubMedPubMed Central Google Scholar
Nam, K. H. et al. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein. J. Biol. Chem.287, 35943–35952 (2012). CASPubMedPubMed Central Google Scholar
Samai, P., Smith, P. & Shuman, S. Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.66, 1552–1556 (2010). CASPubMedPubMed Central Google Scholar
Fiegna, F. & Velicer, G. J. Competitive fates of bacterial social parasites: persistence and self-induced extinction of Myxococcus xanthus cheaters. Proc. Biol. Sci.270, 1527–1534 (2003). PubMedPubMed Central Google Scholar
Sampson, T. R. & Weiss, D. S. Degeneration of a CRISPR/Cas system and its regulatory target during the evolution of a pathogen. RNA Biol.10, 1618–1622 (2013). CASPubMedPubMed Central Google Scholar
Schunder, E., Rydzewski, K., Grunow, R. & Heuner, K. First indication for a functional CRISPR/Cas system in Francisella tularensis. Int. J. Med. Microbiol.303, 51–60 (2013). CASPubMed Google Scholar
Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol.1, e60 (2005). PubMedPubMed Central Google Scholar
Karatan, E. & Watnick, P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev.73, 310–347 (2009). CASPubMedPubMed Central Google Scholar
Mikkelsen, H., Sivaneson, M. & Filloux, A. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ. Microbiol.13, 1666–1681 (2011). CASPubMed Google Scholar
Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature493, 429–432 (2013). CASPubMed Google Scholar
Severinov, K. CRISPR–Cas: outstanding questions remain: comment on “Diversity, evolution & therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems” by Edwin L. Cooper and Nicola Overstreet. Phys. Life Rev.11, 146–148 (2013). PubMed Google Scholar
Vos, M. Why do bacteria engage in homologous recombination? Trends Microbiol.17, 226–232 (2009). CASPubMed Google Scholar
Bikard, D., Hatoum-Aslan, A., Mucida, D. & Marraffini, L. A. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe12, 177–186 (2012). CASPubMed Google Scholar
Palmer, K. L. & Gilmore, M. S. Multidrug-resistant enterococci lack CRISPR–Cas. mBio1, e00227–10 (2010). PubMedPubMed Central Google Scholar
Carte, J., Wang, R., Li, H., Terns, R. M. & Terns, M. P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev.22, 3489–3496 (2008). CASPubMedPubMed Central Google Scholar
Hale, C., Kleppe, K., Terns, R. M. & Terns, M. P. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA14, 2572–2579 (2008). CASPubMedPubMed Central Google Scholar
Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science322, 1843–1845 (2008). CASPubMedPubMed Central Google Scholar
Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature468, 67–71 (2010). CASPubMed Google Scholar
Westra, E. R. et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell46, 595–605 (2012). CASPubMedPubMed Central Google Scholar
Reeks, J., Naismith, J. H. & White, M. F. CRISPR interference: a structural perspective. Biochem. J.453, 155–166 (2013). CASPubMedPubMed Central Google Scholar
Jore, M. M. et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nature Struct. Mol. Biol.18, 529–536 (2011). CAS Google Scholar
Rouillon, C. et al. Structure of the CRISPR interference complex CSM reveals key similarities with Cascade. Mol. Cell52, 124–134 (2013). CASPubMedPubMed Central Google Scholar
Hatoum-Aslan, A., Maniv, I., Samai, P. & Marraffini, L. A. Genetic characterization of anti-plasmid immunity by a type III-A CRISPR–Cas system. J. Bacteriol.196, 310–317 (2013). PubMed Google Scholar
Sorek, R., Lawrence, C. M. & Wiedenheft, B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem.82, 237–266 (2013). CASPubMed Google Scholar
Zusman, D. R., Scott, A. E., Yang, Z. & Kirby, J. R. Chemosensory pathways, motility and development in Myxococcus xanthus. Nature Rev. Microbiol.5, 862–872 (2007). CAS Google Scholar