HIV-1 capsid: the multifaceted key player in HIV-1 infection (original) (raw)
Briggs, J. A. et al. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol.11, 672–675 (2004). ArticleCASPubMed Google Scholar
Ganser, B. K., Li, S., Klishko, V. Y., Finch, J. T. & Sundquist, W. I. Assembly and analysis of conical models for the HIV-1 core. Science283, 80–83 (1999). This paper established the first molecular models to explain the fullerene-cone structure of the HIV-1 core. ArticleCASPubMed Google Scholar
Li, S., Hill, C. P., Sundquist, W. I. & Finch, J. T. Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature407, 409–413 (2000). ArticleCASPubMed Google Scholar
Ganser-Pornillos, B. K., Cheng, A. & Yeager, M. Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell131, 70–79 (2007).The first high-resolution structure of assembled HIV-1 CA, identifying critical interfaces that promote capsid assembly and stability. ArticleCASPubMed Google Scholar
Byeon, I. J. et al. Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell139, 780–790 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bhattacharya, A. et al. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proc. Natl Acad. Sci. USA111, 18625–18630 (2014). ArticleCASPubMed Google Scholar
Price, A. J. et al. Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly. PLoS Pathog.10, e1004459 (2014). ArticleCASPubMedPubMed Central Google Scholar
Accola, M. A., Öhagen, A. & Göttlinger, H. G. Isolation of human immunodeficiency virus type 1 cores: retention of Vpr in the absence of p6_gag_. J. Virol.74, 6198–6202 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kotov, A., Zhou, J., Flicker, P. & Aiken, C. Association of Nef with the human immunodeficiency virus type 1 core. J. Virol.73, 8824–8830 (1999). CASPubMedPubMed Central Google Scholar
Welker, R., Hohenberg, H., Tessmer, U., Huckhagel, C. & Kräusslich, H. G. Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1. J. Virol.74, 1168–1177 (2000). ArticleCASPubMedPubMed Central Google Scholar
Forshey, B. M., von Schwedler, U., Sundquist, W. I. & Aiken, C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol.76, 5667–5677 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gao, D. et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science341, 903–906 (2013). ArticleCASPubMed Google Scholar
Lahaye, X. et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity39, 1132–1142 (2013). ArticleCASPubMed Google Scholar
Rasaiyaah, J. et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature503, 402–405 (2013). References 14 and 15 demonstrate the substantial consequences associated with slight changes in viral CA and its ability to interact with specific cellular factors during infection. Reference 15 additionally provides insight into how certain CA mutations induce IFN responses in primary cells, perhaps explaining the strong selective pressure operating against these mutationsin vivo. The paper also demonstrates that interference with uncoating or engagement of certain cellular factors can induce a potent innate immune response. ArticleCASPubMedPubMed Central Google Scholar
Yan, N., Regalado-Magdos, A. D., Stiggelbout, B., Lee-Kirsch, M. A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol.11, 1005–1013 (2010). ArticleCASPubMedPubMed Central Google Scholar
Aiken, C. Viral and cellular factors that regulate HIV-1 uncoating. Curr. Opin. HIV AIDS1, 194–199 (2006). ArticlePubMed Google Scholar
Yamashita, M. & Emerman, M. Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J. Virol.78, 5670–5678 (2004). This paper showed that CA is the viral protein underlying the ability of HIV-1 to infect non-dividing cells. ArticleCASPubMedPubMed Central Google Scholar
Yamashita, M., Perez, O., Hope, T. J. & Emerman, M. Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells. PLoS Pathog.3, 1502–1510 (2007). ArticleCASPubMed Google Scholar
Zhou, L. et al. Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration. PLoS Pathog.7, e1002194 (2011). ArticleCASPubMedPubMed Central Google Scholar
Matreyek, K. A. & Engelman, A. The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J. Virol.85, 7818–7827 (2011). ArticleCASPubMedPubMed Central Google Scholar
Matreyek, K. A., Yucel, S. S., Li, X. & Engelman, A. Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog.9, e1003693 (2013). This paper describes molecular mapping of the NUP153–CA interface; results that were ultimately confirmed by structural studies. ArticleCASPubMedPubMed Central Google Scholar
Peng, K. et al. Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. eLife3, e04114 (2014). ArticlePubMedPubMed Central Google Scholar
Hulme, A. E., Kelley, Z., Foley, D. & Hope, T. J. Complementary assays reveal a low level of CA associated with viral complexes in the nuclei of HIV-1-infected cells. J. Virol. 5350–5361 (2015).
Lowe, A. R. et al. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature467, 600–603 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pante, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell13, 425–434 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yang, R. et al. Second-site suppressors of HIV-1 capsid mutations: restoration of intracellular activities without correction of intrinsic capsid stability defects. Retrovirology9, 30 (2012). ArticleCASPubMedPubMed Central Google Scholar
Jia, X., Zhao, Q. & Xiong, Y. HIV suppression by host restriction factors and viral immune evasion. Curr. Opin. Struct. Biol.31, 106–114 (2015). ArticleCASPubMedPubMed Central Google Scholar
Mortuza, G. B. et al. High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature431, 481–485 (2004). ArticleCASPubMed Google Scholar
Di Nunzio, F. et al. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology440, 8–18 (2013). ArticleCASPubMed Google Scholar
Koh, Y. et al. Differential effects of human immunodeficiency virus type 1 capsid and cellular factors nucleoporin 153 and LEDGF/p75 on the efficiency and specificity of viral DNA integration. J. Virol.87, 648–658 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ocwieja, K. E. et al. HIV integration targeting: a pathway involving transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog.7, e1001313 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fassati, A. & Goff, S. P. Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J. Virol.75, 3626–3635 (2001). ArticleCASPubMedPubMed Central Google Scholar
Miller, M. D., Farnet, C. M. & Bushman, F. D. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J. Virol.71, 5382–5390 (1997). CASPubMedPubMed Central Google Scholar
Fassati, A. & Goff, S. P. Characterization of intracellular reverse transcription complexes of Moloney murine leukemia virus. J. Virol.73, 8919–8925 (1999). CASPubMedPubMed Central Google Scholar
Hulme, A. E., Perez, O. & Hope, T. J. Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc. Natl Acad. Sci. USA108, 9975–9980 (2011). ArticleCASPubMed Google Scholar
Lukic, Z., Dharan, A., Fricke, T., Diaz-Griffero, F. & Campbell, E. M. HIV-1 uncoating is facilitated by dynein and kinesin-1. J. Virol.88, 13613–13625 (2014). ArticleCASPubMedPubMed Central Google Scholar
Perez-Caballero, D., Hatziioannou, T., Zhang, F., Cowan, S. & Bieniasz, P. D. Restriction of human immunodeficiency virus type 1 by TRIM-CypA occurs with rapid kinetics and independently of cytoplasmic bodies, ubiquitin, and proteasome cctivity. J. Virol.79, 15567–15572 (2005). ArticleCASPubMedPubMed Central Google Scholar
Butler, S. L., Hansen, M. S. & Bushman, F. D. A quantitative assay for HIV DNA integration in vivo. Nat. Med.7, 631–634 (2001). ArticleCASPubMed Google Scholar
Arhel, N. J. et al. HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J.26, 3025–3037 (2007). ArticleCASPubMedPubMed Central Google Scholar
Farnet, C. M. & Bushman, F. D. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell88, 483–492 (1997). ArticleCASPubMed Google Scholar
Hilditch, L. & Towers, G. J. A model for cofactor use during HIV-1 reverse transcription and nuclear entry. Curr. Opin. Virol.4, 32–36 (2014). This paper provides a noteworthy model of CA cofactor engagement not entirely described in this Review. ArticleCASPubMedPubMed Central Google Scholar
Briones, M. S., Dobard, C. W. & Chow, S. A. Role of human immunodeficiency virus type 1 integrase in uncoating of the viral core. J. Virol.84, 5181–5190 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jurado, K. A. et al. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc. Natl Acad. Sci. USA110, 8690–8695 (2013). ArticleCASPubMed Google Scholar
Engelman, A., Englund, G., Orenstein, J. M., Martin, M. A. & Craigie, R. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J. Virol.69, 2729–2736 (1995). CASPubMedPubMed Central Google Scholar
Yang, Y., Fricke, T. & Diaz-Griffero, F. Inhibition of reverse transcriptase activity increases stability of the HIV-1 core. J. Virol.87, 683–687 (2013). ArticleCASPubMedPubMed Central Google Scholar
Zhu, K., Dobard, C. & Chow, S. A. Requirement for integrase during reverse transcription of human immunodeficiency virus type 1 and the effect of cysteine mutations of integrase on its interactions with reverse transcriptase. J. Virol.78, 5045–5055 (2004). ArticleCASPubMedPubMed Central Google Scholar
Franke, E. K., Yuan, H. E. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature372, 359–362 (1994). ArticleCASPubMed Google Scholar
Luban, J., Bossolt, K. L., Franke, E. K., Kalpana, G. V. & Goff, S. P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell73, 1067–1078 (1993). ArticleCASPubMed Google Scholar
Thali, M. et al. Functional association of cyclophilin A with HIV-1 virions. Nature372, 363–365 (1994). ArticleCASPubMed Google Scholar
Hatziioannou, T., Perez-Caballero, D., Cowan, S. & Bieniasz, P. D. Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells. J. Virol.79, 176–183 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sokolskaja, E., Sayah, D. M. & Luban, J. Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J. Virol.78, 12800–12808 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kootstra, N. A., Munk, C., Tonnu, N., Landau, N. R. & Verma, I. M. Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells. Proc. Natl Acad. Sci. USA100, 1298–1303 (2003). ArticleCASPubMed Google Scholar
Towers, G. J. et al. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat. Med.9, 1138–1143 (2003). ArticleCASPubMed Google Scholar
Gamble, T. R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell87, 1285–1294 (1996). ArticleCASPubMed Google Scholar
Braaten, D. et al. Cyclosporine A-resistant human immunodeficiency virus type 1 mutants demonstrate that Gag encodes the functional target of cyclophilin A. J. Virol.70, 5170–5176 (1996). CASPubMedPubMed Central Google Scholar
Braaten, D., Franke, E. K. & Luban, J. Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J. Virol.70, 3551–3560 (1996). CASPubMedPubMed Central Google Scholar
Braaten, D. & Luban, J. Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells. EMBO J.20, 1300–1309 (2001). ArticleCASPubMedPubMed Central Google Scholar
De Iaco, A. & Luban, J. Cyclophilin A promotes HIV-1 reverse transcription but its effect on transduction correlates best with its effect on nuclear entry of viral cDNA. Retrovirology11, 11 (2014). ArticleCASPubMedPubMed Central Google Scholar
Li, Y., Kar, A. K. & Sodroski, J. Target cell type-dependent modulation of human immunodeficiency virus type 1 capsid disassembly by cyclophilin A. J. Virol.83, 10951–10962 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bosco, D. A., Eisenmesser, E. Z., Pochapsky, S., Sundquist, W. I. & Kern, D. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc. Natl Acad. Sci. USA99, 5247–5252 (2002). ArticleCASPubMed Google Scholar
Shah, V. B. et al. The host proteins transportin SR2/TNPO3 and cyclophilin A exert opposing effects on HIV-1 uncoating. J. Virol.87, 422–432 (2013). ArticleCASPubMedPubMed Central Google Scholar
Aberham, C., Weber, S. & Phares, W. Spontaneous mutations in the human immunodeficiency virus type 1 gag gene that affect viral replication in the presence of cyclosporins. J. Virol.70, 3536–3544 (1996). CASPubMedPubMed Central Google Scholar
Schneidewind, A. et al. Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. J. Virol.81, 12382–12393 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yang, R. & Aiken, C. A mutation in alpha helix 3 of CA renders human immunodeficiency virus type 1 cyclosporin A resistant and dependent: rescue by a second-site substitution in a distal region of CA. J. Virol.81, 3749–3756 (2007). ArticleCASPubMedPubMed Central Google Scholar
Qi, M., Yang, R. & Aiken, C. Cyclophilin A-dependent restriction of human immunodeficiency virus type 1 capsid mutants for infection of nondividing cells. J. Virol.82, 12001–12008 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yin, L., Braaten, D. & Luban, J. Human immunodeficiency virus type 1 replication is modulated by host cyclophilin A expression levels. J. Virol.72, 6430–6436 (1998). CASPubMedPubMed Central Google Scholar
Ylinen, L. M. et al. Cyclophilin A levels dictate infection efficiency of human immunodeficiency virus type 1 capsid escape mutants A92E and G94D. J. Virol.83, 2044–2047 (2009). ArticleCASPubMed Google Scholar
Arhel, N. et al. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat. Methods3, 817–824 (2006). ArticleCASPubMed Google Scholar
Sabo, Y. et al. HIV-1 induces the formation of stable microtubules to enhance early infection. Cell Host Microbe14, 535–546 (2013). ArticleCASPubMed Google Scholar
Jayappa, K. D. et al. Human immunodeficiency virus type 1 employs the cellular dynein light chain 1 protein for reverse transcription through interaction with its integrase protein. J. Virol.89, 3497–3511 (2015). ArticleCASPubMedPubMed Central Google Scholar
Strunze, S. et al. Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection. Cell Host Microbe10, 210–223 (2011). ArticleCASPubMed Google Scholar
Yamashita, M. & Emerman, M. Retroviral infection of non-dividing cells: old and new perspectives. Virology344, 88–93 (2006). ArticleCASPubMed Google Scholar
Brass, A. L. et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science319, 921–926 (2008). ArticleCASPubMed Google Scholar
Zhou, H. et al. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe4, 495–504 (2008). ArticleCASPubMed Google Scholar
Ambrose, Z. & Aiken, C. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins. Virology, 454–455, 371–379 (2014). ArticleCASPubMed Google Scholar
Price, A. J. et al. CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLoS Pathog.8, e1002896 (2012). References 7, 8 and 86 demonstrate that some assembled CA must remain associated with the viral complex when it interacts with NUP153 and CPSF6. ArticleCASPubMedPubMed Central Google Scholar
Ruepp, M. D. et al. Mammalian pre-mRNA 3′ end processing factor CF Im 68 functions in mRNA export. Mol. Biol. Cell20, 5211–5223 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hori, T. et al. A carboxy-terminally truncated human CPSF6 lacking residues encoded by exon 6 inhibits HIV-1 cDNA synthesis and promotes capsid disassembly. J. Virol.87, 7726–7736 (2013). ArticleCASPubMedPubMed Central Google Scholar
Henning, M. S., Dubose, B. N., Burse, M. J., Aiken, C. & Yamashita, M. In vivo functions of CPSF6 for HIV-1 as revealed by HIV-1 capsid evolution in HLA-B27-positive subjects. PLoS Pathog.10, e1003868 (2014). ArticleCASPubMedPubMed Central Google Scholar
De Iaco, A. et al. TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm. Retrovirology10, 20 (2013). An elegant molecular study establishing an assay to differentiate between 2-LTR circles and auto-integrants that is critical for understanding the roles of cellular factors and the stages in the lifecycle at which they act. ArticleCASPubMedPubMed Central Google Scholar
Lee, K. et al. HIV-1 capsid-targeting domain of cleavage and polyadenylation specificity factor 6. J. Virol.86, 3851–3860 (2012). A seminal study identifying truncated CPSF6 as a dominant negative inhibitor of infection, leading both to the appreciation of the role of CPSF6 in HIV-1 infection and to the N74D mutant, which remains a critical tool in studies in this area. ArticleCASPubMedPubMed Central Google Scholar
Kataoka, N., Bachorik, J. L. & Dreyfuss, G. Transportin-SR, a nuclear import receptor for SR proteins. J. Cell Biol.145, 1145–1152 (1999). ArticleCASPubMedPubMed Central Google Scholar
Christ, F. et al. Transportin-SR2 imports HIV into the nucleus. Curr. Biol.18, 1192–1202 (2008). ArticleCASPubMed Google Scholar
Cribier, A. et al. Mutations affecting interaction of integrase with TNPO3 do not prevent HIV-1 cDNA nuclear import. Retrovirology8, 104 (2011). ArticleCASPubMedPubMed Central Google Scholar
Krishnan, L. et al. The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase. J. Virol.84, 397–406 (2010). ArticleCASPubMed Google Scholar
De Houwer, S. et al. Identification of residues in the C-terminal domain of HIV-1 integrase that mediate binding to the transportin-SR2 protein. J. Biol. Chem.287, 34059–34068 (2012). ArticleCASPubMedPubMed Central Google Scholar
De Iaco, A. & Luban, J. Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus. Retrovirology8, 98 (2011). ArticleCASPubMedPubMed Central Google Scholar
Valle-Casuso, J. C. et al. TNPO3 is required for HIV-1 replication after nuclear import but prior to integration and binds the HIV-1 core. J. Virol.86, 5931–5936 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schaller, T. et al. HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog.7, e1002439 (2011). This paper demonstrates the connection between HIV-1 CA associations and integration-site selection when in the nucleus. ArticleCASPubMedPubMed Central Google Scholar
Zhang, R., Mehla, R. & Chauhan, A. Perturbation of host nuclear membrane component RanBP2 impairs the nuclear import of human immunodeficiency virus-1 preintegration complex (DNA). PLoS ONE5, e15620 (2010). ArticleCASPubMedPubMed Central Google Scholar
Strambio-De-Castillia, C., Niepel, M. & Rout, M. P. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol.11, 490–501 (2010). ArticleCASPubMed Google Scholar
Di Nunzio, F. et al. Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration. PLoS ONE7, e46037 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bichel, K. et al. HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358. Retrovirology10, 81 (2013). ArticleCASPubMedPubMed Central Google Scholar
Daigle, N. et al. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol.154, 71–84 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol.10, 682–696 (2009). ArticleCASPubMed Google Scholar
Hulme, A. E., Kelley, Z., Okocha, E. A. & Hope, T. J. Identification of capsid mutations that alter the rate of HIV-1 uncoating in infected cells. J. Virol.89, 643–651 (2014). ArticleCASPubMedPubMed Central Google Scholar
Amie, S. M., Noble, E. & Kim, B. Intracellular nucleotide levels and the control of retroviral infections. Virology436, 247–254 (2013). ArticleCASPubMed Google Scholar
Shi, J., Zhou, J., Shah, V. B., Aiken, C. & Whitby, K. Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J. Virol.85, 542–549 (2011). ArticleCASPubMed Google Scholar
Lamorte, L. et al. Discovery of novel small-molecule HIV-1 replication inhibitors that stabilize capsid complexes. Antimicrob. Agents Chemother.57, 4622–4631 (2013). ArticleCASPubMedPubMed Central Google Scholar
Fricke, T., Buffone, C., Opp, S., Valle-Casuso, J. & Diaz-Griffero, F. BI-2 destabilizes HIV-1 cores during infection and prevents binding of CPSF6 to the HIV-1 capsid. Retrovirology11, 120 (2014). ArticleCASPubMedPubMed Central Google Scholar
Azzoni, L. et al. Pegylated interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J. Infect. Dis.207, 213–222 (2013). ArticleCASPubMed Google Scholar
Sandler, N. G. et al. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature511, 601–605 (2014). This paper provides an elegant demonstration of the potential utility of IFN response in controlling infection, showing the correlation between IFN-stimulated gene expression and control of viral infection. ArticleCASPubMedPubMed Central Google Scholar
Bosinger, S. E. & Utay, N. S. Type I interferon: understanding its role in HIV pathogenesis and therapy. Curr. HIV/AIDS Rep.12, 41–53 (2015). ArticlePubMed Google Scholar
Doyle, T., Goujon, C. & Malim, M. H. HIV-1 and interferons: who's interfering with whom? Nat. Rev. Microbiol.13, 403–413 (2015). ArticleCASPubMed Google Scholar
Shah, V. B. & Aiken, C. In vitro uncoating of HIV-1 cores. J. Vis. Exp.57, e3384 (2011). Google Scholar
Stremlau, M. et al. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor. Proc. Natl Acad. Sci. USA103, 5514–5519 (2006). ArticleCASPubMed Google Scholar
Kutluay, S. B., Perez-Caballero, D. & Bieniasz, P. D. Fates of retroviral core components during unrestricted and TRIM5-restricted infection. PLoS Pathog.9, e1003214 (2013). ArticleCASPubMedPubMed Central Google Scholar
Iordanskiy, S., Berro, R., Altieri, M., Kashanchi, F. & Bukrinsky, M. Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin. Retrovirology3, 4 (2006). ArticleCASPubMedPubMed Central Google Scholar
Burdick, R. C., Hu, W. S. & Pathak, V. K. Nuclear import of APOBEC3F-labeled HIV-1 preintegration complexes. Proc. Natl Acad. Sci. USA110, E4780–E4789 (2013). ArticleCASPubMed Google Scholar
Campbell, E. M., Perez, O., Anderson, J. L. & Hope, T. J. Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α. J. Cell Biol.180, 549–561 (2008). ArticleCASPubMedPubMed Central Google Scholar
Campbell, E. M., Perez, O., Melar, M. & Hope, T. J. Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell. Virology360, 286–293 (2007). ArticleCASPubMed Google Scholar
Thomas, J. A., Ott, D. E. & Gorelick, R. J. Efficiency of human immunodeficiency virus type 1 postentry infection processes: evidence against disproportionate numbers of defective virions. J. Virol.81, 4367–4370 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sayah, D. M., Sokolskaja, E., Berthoux, L. & Luban, J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature430, 569–573 (2004). A paper detailing the first identification of the TRIM–Cyp restriction factor, which has become an important tool in the study of uncoating, given its ability to recognize CA and be inhibited by CsA. ArticleCASPubMed Google Scholar
Luban, J. Cyclophilin A, TRIM5, and resistance to human immunodeficiency virus type 1 infection. J. Virol.81, 1054–1061 (2007). ArticleCASPubMed Google Scholar
Song, C. & Aiken, C. Analysis of human cell heterokaryons demonstrates that target cell restriction of cyclosporine-resistant human immunodeficiency virus type 1 mutants is genetically dominant. J. Virol.81, 11946–11956 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gaudin, R., Alencar, B. C., Arhel, N. & Benaroch, P. HIV trafficking in host cells: motors wanted! Trends Cell Biol.23, 652–662 (2013). ArticleCASPubMed Google Scholar