An updated evolutionary classification of CRISPR–Cas systems (original) (raw)
Deveau, H., Garneau, J. E. & Moineau, S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol.64, 475–493 (2010). CASPubMed Google Scholar
Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet.11, 181–190 (2010). CASPubMedPubMed Central Google Scholar
Koonin, E. V. & Makarova, K. S. CRISPR–Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol.10, 679–686 (2013). CASPubMedPubMed Central Google Scholar
Makarova, K. S., Wolf, Y. I. & Koonin, E. V. The basic building blocks and evolution of CRISPR–Cas systems. Biochem. Soc. Trans.41, 1392–1400 (2013). CASPubMedPubMed Central Google Scholar
Barrangou, R. & Marraffini, L. A. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol. Cell54, 234–244 (2014). CASPubMedPubMed Central Google Scholar
Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science315, 1709–1712 (2007). CASPubMed Google Scholar
Barrangou, R. CRISPR–Cas systems and RNA-guided interference. Wiley Interdiscip. Rev. RNA4, 267–278 (2013). CASPubMed Google Scholar
Westra, E. R. et al. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu. Rev. Genet.46, 311–339 (2012). CASPubMed Google Scholar
Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature482, 331–338 (2012). CASPubMed Google Scholar
Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature468, 67–71 (2010). CASPubMed Google Scholar
Magadán, A. H., Dupuis, M. E., Villion, M. & Moineau, S. Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3–Cas system. PLoS ONE7, e40913 (2012). PubMedPubMed Central Google Scholar
van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci.34, 401–407 (2009). CASPubMed Google Scholar
Makarova, K. S. et al. Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Microbiol.9, 467–477 (2011). CASPubMed Google Scholar
Westra, E. R., Buckling, A. & Fineran, P. C. CRISPR–Cas systems: beyond adaptive immunity. Nat. Rev. Microbiol.12, 317–326 (2014). CASPubMed Google Scholar
Sampson, T. R. & Weiss, D. S. CRISPR–Cas systems: new players in gene regulation and bacterial physiology. Front. Cell. Infect. Microbiol.4, 37 (2014). PubMedPubMed Central Google Scholar
Louwen, R., Staals, R. H., Endtz, H. P., van Baarlen, P. & van der Oost, J. The role of CRISPR–Cas systems in virulence of pathogenic bacteria. Microbiol. Mol. Biol. Rev.78, 74–88 (2014). PubMedPubMed Central Google Scholar
Nunez, J. K. et al. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nat. Struct. Mol. Biol.21, 528–534 (2014). CASPubMedPubMed Central Google Scholar
Yosef, I., Goren, M. G. & Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res.40, 5569–5576 (2012). CASPubMedPubMed Central Google Scholar
Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol.190, 1390–1400 (2008). CASPubMed Google Scholar
Shah, S. A., Erdmann, S., Mojica, F. J. & Garrett, R. A. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol.10, 891–899 (2013). CASPubMedPubMed Central Google Scholar
Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology151, 2551–2561 (2005). CASPubMed Google Scholar
Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology155, 733–740 (2009). CASPubMed Google Scholar
Wang, R., Preamplume, G., Terns, M. P., Terns, R. M. & Li, H. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure19, 257–264 (2011). CASPubMedPubMed Central Google Scholar
Deltcheva, E. et al. CRISPR RNA maturation by _trans_-encoded small RNA and host factor RNase III. Nature471, 602–607 (2011). CASPubMedPubMed Central Google Scholar
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337, 816–821 (2012). CASPubMedPubMed Central Google Scholar
Samai, P. et al. Co-transcriptional DNA and RNA cleavage during type III CRISPR–Cas immunity. Cell161, 1164–1174 (2015). CASPubMedPubMed Central Google Scholar
Hale, C. R. et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol. Cell45, 292–302 (2012). CASPubMedPubMed Central Google Scholar
Sashital, D. G., Wiedenheft, B. & Doudna, J. A. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell46, 606–615 (2012). CASPubMedPubMed Central Google Scholar
van Duijn, E. et al. Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in clustered-regularly-interspaced shot-palindromic-repeats (CRISPR)-associated protein complexes from Escherichia coli and Pseudomonas aeruginosa. Mol. Cell Proteom.11, 1430–1441 (2012). Google Scholar
Zhang, J. et al. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol. Cell45, 303–313 (2012). CASPubMedPubMed Central Google Scholar
Wiedenheft, B. et al. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature477, 486–489 (2011). CASPubMedPubMed Central Google Scholar
Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol.1, e60 (2005). PubMedPubMed Central Google Scholar
Makarova, K. S., Aravind, L., Wolf, Y. I. & Koonin, E. V. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR–Cas systems. Biol. Direct6, 38 (2011). CASPubMedPubMed Central Google Scholar
Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct1, 7 (2006). PubMedPubMed Central Google Scholar
Vestergaard, G., Garrett, R. A. & Shah, S. A. CRISPR adaptive immune systems of Archaea. RNA Biol.11, 156–167 (2014). CASPubMedPubMed Central Google Scholar
Staals, R. H. et al. Structure and activity of the RNA-targeting Type III-B CRISPR–Cas complex of Thermus thermophilus. Mol. Cell52, 135–145 (2013). CASPubMedPubMed Central Google Scholar
Spilman, M. et al. Structure of an RNA silencing complex of the CRISPR–Cas immune system. Mol. Cell52, 146–152 (2013). CASPubMed Google Scholar
Staals, R. H. et al. RNA targeting by the type III-A CRISPR–Cas Csm complex of Thermus thermophilus. Mol. Cell56, 518–530 (2014). CASPubMedPubMed Central Google Scholar
Tamulaitis, G. et al. Programmable RNA shredding by the type III-A CRISPR–Cas system of Streptococcus thermophilus. Mol. Cell56, 506–517 (2014). CASPubMed Google Scholar
Benda, C. et al. Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4. Mol. Cell56, 43–54 (2014). CASPubMed Google Scholar
Hale, C. R., Cocozaki, A., Li, H., Terns, R. M. & Terns, M. P. Target RNA capture and cleavage by the Cmr type III-B CRISPR–Cas effector complex. Genes Dev.28, 2432–2443 (2014). PubMedPubMed Central Google Scholar
van der Oost, J., Westra, E. R., Jackson, R. N. & Wiedenheft, B. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat. Rev. Microbiol.12, 479–492 (2014). CASPubMedPubMed Central Google Scholar
Jackson, R. N. Lavin, M., Carter, J., & Wiedenheft, B. Fitting CRISPR-associated Cas3 into the helicase family tree. Curr Opin Struct Biol.24, 106–114 (2014). CASPubMed Google Scholar
Mulepati, S., Heroux, A. & Bailey, S. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science345, 1479–1484 (2014). CASPubMedPubMed Central Google Scholar
Zhao, H. et al. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature515, 147–150 (2014). CASPubMed Google Scholar
Taylor, D. W. et al. Structures of the CRISPR–Cmr complex reveal mode of RNA target positioning. Science348, 581–585 (2015). CASPubMedPubMed Central Google Scholar
Mali, P., Esvelt, K. M. & Church, G. M. Cas9 as a versatile tool for engineering biology. Nat. Methods10, 957–963 (2013). CASPubMedPubMed Central Google Scholar
Sander, J. D. & Joung, J. K. CRISPR–Cas systems for editing, regulating and targeting genomes. Nat. Biotech.32, 347–355 (2014). CAS Google Scholar
Altschul, S. F. & Koonin, E. V. PSI-BLAST — a tool for making discoveries in sequence databases. Trends Biochem. Sci.23, 444–447 (1998). CASPubMed Google Scholar
Sinkunas, T. et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J.30, 1335–1342 (2011). CASPubMedPubMed Central Google Scholar
Gong, B. et al. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. Proc. Natl Acad. Sci. USA111, 16359–16364 (2014). CASPubMedPubMed Central Google Scholar
Huo, Y. et al. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat. Struct. Mol. Biol.21, 771–777 (2014). CASPubMedPubMed Central Google Scholar
Mulepati, S. & Bailey, S. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3). J. Biol. Chem.286, 31896–31903 (2011). CASPubMedPubMed Central Google Scholar
Makarova, K. S. & Koonin, E. V. Annotation and classification of CRISPR–Cas systems. Methods Mol. Biol.1311, 47–75 (2015). PubMedPubMed Central Google Scholar
Nam, K. H. et al. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR–Cas system. Structure20, 1574–1584 (2012). CASPubMedPubMed Central Google Scholar
Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B. & Koonin, E. V. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res.30, 482–496 (2002). CASPubMedPubMed Central Google Scholar
Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science322, 1843–1845 (2008). CASPubMedPubMed Central Google Scholar
Goldberg, G. W., Jiang, W., Bikard, D. & Marraffini, L. A. Conditional tolerance of temperate phages via transcription-dependent CRISPR–Cas targeting. Nature514, 633–637 (2014). CASPubMedPubMed Central Google Scholar
Deng, L., Garrett, R. A., Shah, S. A., Peng, X. & She, Q. A novel interference mechanism by a type IIIB CRISPR–Cmr module in Sulfolobus. Mol. Microbiol.87, 1088–1099 (2013). CASPubMed Google Scholar
Peng, W., Feng, M., Feng, X., Liang, Y. X. & She, Q. An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. Nucleic Acids Res.43, 406–417 (2015). CASPubMed Google Scholar
White, M. F. Structure, function and evolution of the XPD family of iron-sulfur-containing 5′→3′ DNA helicases. Biochem. Soc. Trans.37, 547–551 (2009). CASPubMed Google Scholar
Heler, R. et al. Cas9 specifies functional viral targets during CRISPR–Cas adaptation. 519, 199–202 Nature (2015). CASPubMedPubMed Central Google Scholar
Wei, Y., Terns, R. M. & Terns, M. P. Cas9 function and host genome sampling in Type II-A CRISPR–Cas adaptation. Genes Dev.29, 356–361 (2015). CASPubMedPubMed Central Google Scholar
Chylinski, K., Makarova, K. S., Charpentier, E. & Koonin, E. V. Classification and evolution of type II CRISPR–Cas systems. Nucleic Acids Res.42, 6091–6105 (2014). CASPubMedPubMed Central Google Scholar
Chylinski, K., Le Rhun, A. & Charpentier, E. The tracrRNA and Cas9 families of type II CRISPR–Cas immunity systems. RNA Biol.10, 726–737 (2013). CASPubMedPubMed Central Google Scholar
Briner, A. E. et al. Guide RNA functional modules direct Cas9 activity and orthogonality. Mol. Cell56, 333–339 (2014). CASPubMed Google Scholar
Fonfara, I. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR–Cas systems. Nucleic Acids Res.42, 2577–2590 (2014). CASPubMed Google Scholar
Zhang, Y. et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell50, 488–503 (2013). CASPubMedPubMed Central Google Scholar
Schunder, E., Rydzewski, K., Grunow, R. & Heuner, K. First indication for a functional CRISPR/Cas system in Francisella tularensis. Int. J. Med. Microbiol.303, 51–60 (2013). CASPubMed Google Scholar
Makarova, K. S. et al. Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes. Extremophiles18, 877–893 (2014). CASPubMedPubMed Central Google Scholar
Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res.41, 4360–4377 (2013). CASPubMedPubMed Central Google Scholar
Grissa, I., Vergnaud, G. & Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics8, 172 (2007). PubMedPubMed Central Google Scholar
Bland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics8, 209 (2007). PubMedPubMed Central Google Scholar
Lange, S. J., Alkhnbashi, O. S., Rose, D., Will, S. & Backofen, R. CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Res.41, 8034–8044 (2013). CASPubMedPubMed Central Google Scholar
Alkhnbashi, O. S. et al. CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics30, i489–i496 (2014). CASPubMedPubMed Central Google Scholar
Kunin, V., Sorek, R. & Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol.8, R61 (2007). PubMedPubMed Central Google Scholar
Leplae, R. et al. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res.39, 5513–5525 (2011). CASPubMedPubMed Central Google Scholar
Koonin, E. V. & Wolf, Y. I. Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front. Cell Infect. Microbiol.2, 119 (2012). PubMedPubMed Central Google Scholar
Godde, J. S. & Bickerton, A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol.62, 718–729 (2006). CASPubMed Google Scholar
Almendros, C., Mojica, F. J., Díez-Villaseñor, C., Guzmán, N. M. & García-Martínez, J. CRISPR–Cas functional module exchange in Escherichia coli. mBio5, e00767–e00713 (2014). PubMedPubMed Central Google Scholar
Shah, S. A. & Garrett, R. A. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems. Res. Microbiol.162, 27–38 (2011). CASPubMed Google Scholar
Yutin, N., Puigbo, P., Koonin, E. V. & Wolf, Y. I. Phylogenomics of prokaryotic ribosomal proteins. PLoS ONE7, e36972 (2012). CASPubMedPubMed Central Google Scholar
Takeuchi, N., Wolf, Y. I., Makarova, K. S. & Koonin, E. V. Nature and intensity of selection pressure on CRISPR-associated genes. J. Bacteriol.194, 1216–1225 (2012). CASPubMedPubMed Central Google Scholar
Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D. & Koonin, E. V. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR–Cas immunity. BMC Biol.12, 36 (2014). PubMedPubMed Central Google Scholar
Koonin, E. V. & Krupovic, M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet.16, 184–192 (2015). CASPubMed Google Scholar
Garrett, R. A., Vestergaard, G. & Shah, S. A. Archaeal CRISPR-based immune systems: exchangeable functional modules. Trends Microbiol.19, 549–556 (2011). CASPubMed Google Scholar
Nunez, J. K., Lee, A. S., Engelman, A. & Doudna, J. A. Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity. Nature519, 193–198 (2015). CASPubMedPubMed Central Google Scholar
Puigbo, P., Wolf, Y. I. & Koonin, E. V. Search for a 'Tree of Life' in the thicket of the phylogenetic forest. J. Biol.8, 59 (2009). PubMedPubMed Central Google Scholar
Hooton, S. P. & Connerton, I. F. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein. Front. Microbiol.5, 744 (2014). PubMed Google Scholar
Wiedenheft, B. et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure17, 904–912 (2009). CASPubMed Google Scholar
Kwon, A. R. et al. Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease activity. Nucleic Acids Res.40, 4216–4228 (2012). CASPubMedPubMed Central Google Scholar
Makarova, K. S., Anantharaman, V., Aravind, L. & Koonin, E. V. Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol. Direct7, 40 (2012). CASPubMedPubMed Central Google Scholar
Beloglazova, N. et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem.283, 20361–20371 (2008). CASPubMedPubMed Central Google Scholar
Nam, K. H. et al. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein. J. Biol. Chem.287, 35943–35952 (2012). CASPubMedPubMed Central Google Scholar
Rouillon, C. et al. Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol. Cell52, 124–134 (2013). CASPubMedPubMed Central Google Scholar
Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science343, 1247997 (2014). PubMedPubMed Central Google Scholar
Beloglazova, N. et al. Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J.30, 4616–4627 (2011). CASPubMedPubMed Central Google Scholar
Ramia, N. F. et al. Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR–Cas complex. Cell Rep.9, 1610–1617 (2014). CASPubMedPubMed Central Google Scholar
Zhu, X. & Ye, K. Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex. Nucleic Acids Res.43, 1257–1267 (2015). CASPubMed Google Scholar
Brendel, J. et al. A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (crispr)-derived rnas (crrnas) in Haloferax volcanii. J. Biol. Chem.289, 7164–7177 (2014). CASPubMedPubMed Central Google Scholar
Osawa, T., Inanaga, H., Sato, C. & Numata, T. Crystal structure of the CRISPR–Cas RNA silencing Cmr complex bound to a target analog. Mol. Cell58, 418–430 (2015). CASPubMed Google Scholar
Jung, T. Y. et al. Crystal structure of the Csm1 subunit of the Csm complex and its single-stranded DNA-specific nuclease activity. Structure23, 782–790 (2015). CASPubMed Google Scholar
Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res.39, 9275–9282 (2011). CASPubMedPubMed Central Google Scholar
Makarova, K. S., Anantharaman, V., Grishin, N. V., Koonin, E. V. & Aravind, L. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front. Genet.5, 102 (2014). PubMedPubMed Central Google Scholar
Nam, K. H., Kurinov, I. & Ke, A. Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity. J. Biol. Chem.286, 30759–30768 (2011). CASPubMedPubMed Central Google Scholar
Koo, Y., Jung, D. K. & Bae, E. Crystal structure of Streptococcus pyogenes Csn2 reveals calcium-dependent conformational changes in its tertiary and quaternary structure. PLoS ONE7, e33401 (2012). CASPubMedPubMed Central Google Scholar
Arslan, Z. et al. Double-strand DNA end-binding and sliding of the toroidal CRISPR-associated protein Csn2. Nucleic Acids Res.41, 6347–6359 (2013). CASPubMedPubMed Central Google Scholar
Lee, K. H. et al. Identification, structural, and biochemical characterization of a group of large Csn2 proteins involved in CRISPR-mediated bacterial immunity. Proteins80, 2573–2582 (2012). CASPubMed Google Scholar
Zhu, X. & Ye, K. Crystal structure of Cmr2 suggests a nucleotide cyclase-related enzyme in type III CRISPR–Cas systems. FEBS Lett.586, 939–945 (2012). CASPubMed Google Scholar
Shao, Y. et al. Structure of the Cmr2–Cmr3 subcomplex of the Cmr RNA silencing complex. Structure21, 376–384 (2013). CASPubMedPubMed Central Google Scholar
Guy, C. P., Majernik, A. I., Chong, J. P. & Bolt, E. L. A novel nuclease-ATPase (Nar71) from archaea is part of a proposed thermophilic DNA repair system. Nucleic Acids Res.32, 6176–6186 (2004). CASPubMedPubMed Central Google Scholar
Reeks, J. et al. Structure of the archaeal Cascade subunit Csa5: relating the small subunits of CRISPR effector complexes. RNA Biol.10, 762–769 (2013). CASPubMedPubMed Central Google Scholar
Jackson, R. N. & Wiedenheft, B. A conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses. Mol. Cell58, 722–728 (2015). CASPubMedPubMed Central Google Scholar