Tobler, I. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 77–90 (Saunders, 2005). Google Scholar
Van Dongen, H. P., Maislin, G., Mullington, J. M. & Dinges, D. F. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep26, 117–126 (2003). PubMed Google Scholar
Killgore, W. D. Effects of sleep deprivation on cognition. Prog. Brain Res.185, 105–129 (2010). PubMed Google Scholar
McCoy, J. G. & Strecker, R. E. The cognitive cost of sleep lost. Neurobiol. Learn. Mem.96, 564–582 (2011). PubMedPubMed Central Google Scholar
Lo, J. C. et al. Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PLoS ONE7, e45987 (2012). CASPubMedPubMed Central Google Scholar
Vassalli, A. & Dijk, D. J. Sleep function: current questions and new approaches. Eur. J. Neurosci.29, 1830–1841 (2009). PubMed Google Scholar
Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol.85, 1969–1985 (2001). CASPubMed Google Scholar
Hobson, J. A. & McCarley, R. W. Cortical unit activity in sleep and waking. Electroencephalogr. Clin. Neurophysiol.30, 97–112 (1971). CASPubMed Google Scholar
Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006). Google Scholar
Verzeano, M. & Negishi, K. Neuronal activity in cortical and thalamic networks. J. Gen. Physiol.43, 177–195 (1960). PubMedPubMed Central Google Scholar
Noda, H. & Adey, W. R. Firing of neuron pairs in cat association cortex during sleep and wakefulness. J. Neurophysiol.33, 672–684 (1970). CASPubMed Google Scholar
Burns, B. D., Stean, J. P. & Webb, A. C. The effects of sleep on neurons in isolated cerebral cortex. Proc. R. Soc. Lond. B206, 281–291 (1979). CASPubMed Google Scholar
Harris, K. D. & Thiele, A. Cortical state and attention. Nature Rev. Neurosci.12, 509–523 (2011). CAS Google Scholar
Crunelli, V. & Hughes, S. W. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nature Neurosci.13, 9–17 (2009). PubMed Google Scholar
Massimini, M., Huber, R., Ferrarelli, F., Hill, S. & Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci.24, 6862–6870 (2004). CASPubMedPubMed Central Google Scholar
Buzsaki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nature Rev. Neurosci.13, 407–420 (2012). CAS Google Scholar
Chauvette, S., Volgushev, M. & Timofeev, I. Origin of active states in local neocortical networks during slow sleep oscillation. Cereb. Cortex20, 2660–2674 (2010). PubMedPubMed Central Google Scholar
Poulet, J. F. & Petersen, C. C. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature454, 881–885 (2008). CASPubMed Google Scholar
Saleem, A. B., Chadderton, P., Apergis-Schoute, J., Harris, K. D. & Schultz, S. R. Methods for predicting cortical UP and DOWN states from the phase of deep layer local field potentials. J. Comput. Neurosci.29, 49–62 (2010). PubMedPubMed Central Google Scholar
Okun, M. & Lampl, I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nature Neurosci.11, 535–537 (2008). CASPubMed Google Scholar
Mackiewicz, M. et al. Macromolecule biosynthesis: a key function of sleep. Physiol. Genomics31, 441–457 (2007). CASPubMed Google Scholar
Reimund, E. The free radical flux theory of sleep. Med. Hypotheses43, 231–233 (1994). CASPubMed Google Scholar
Inoue, S., Honda, K. & Komoda, Y. Sleep as neuronal detoxification and restitution. Behav. Brain Res.69, 91–96 (1995). CASPubMed Google Scholar
Benington, J. H. & Heller, H. C. Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol.45, 347–360 (1995). CASPubMed Google Scholar
Scharf, M. T., Naidoo, N., Zimmerman, J. E. & Pack, A. I. The energy hypothesis of sleep revisited. Prog. Neurobiol.86, 264–280 (2008). PubMedPubMed Central Google Scholar
Buzsaki, G. Memory consolidation during sleep: a neurophysiological perspective. J. Sleep Res.7, 17–23 (1998). PubMed Google Scholar
Sejnowski, T. J. & Destexhe, A. Why do we sleep? Brain Res.886, 208–223 (2000). CASPubMed Google Scholar
Born, J., Rasch, B. & Gais, S. Sleep to remember. Neuroscientist12, 410–424 (2006). PubMed Google Scholar
Tononi, G. & Cirelli, C. Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plast.2012, 415250 (2012). PubMedPubMed Central Google Scholar
Hernandez, P. J. & Abel, T. A molecular basis for interactions between sleep and memory. Sleep Med. Clin.6, 71–84 (2011). PubMedPubMed Central Google Scholar
Yoo, S. S., Hu, P. T., Gujar, N., Jolesz, F. A. & Walker, M. P. A deficit in the ability to form new human memories without sleep. Nature Neurosci.10, 385–392 (2007). CASPubMed Google Scholar
Krueger, J. M. & Tononi, G. Local use-dependent sleep; synthesis of the new paradigm. Curr. Top. Med. Chem.11, 2490–2492 (2011). CASPubMedPubMed Central Google Scholar
Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev.10, 49–62 (2006). PubMed Google Scholar
Frank, M. G. The mystery of sleep function: current perspectives and future directions. Rev. Neurosci.17, 375–392 (2006). CASPubMed Google Scholar
Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science265, 676–679 (1994). CASPubMed Google Scholar
Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neurosci.10, 100–107 (2007). CASPubMed Google Scholar
Fujisawa, S. & Buzsaki, G. A. 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron72, 153–165 (2011). CASPubMedPubMed Central Google Scholar
Tononi, G., Massimini, M. & Riedner, B. A. Sleepy dialogues between cortex and hippocampus: who talks to whom? Neuron52, 748–749 (2006). CASPubMed Google Scholar
Molle, M. & Born, J. Slow oscillations orchestrating fast oscillations and memory consolidation. Prog. Brain Res.193, 93–110 (2011). PubMed Google Scholar
Logothetis, N. K. et al. Hippocampal–cortical interaction during periods of subcortical silence. Nature491, 547–553 (2012). CASPubMed Google Scholar
Diekelmann, S. & Born, J. The memory function of sleep. Nature Rev. Neurosci.11, 114–126 (2010). CAS Google Scholar
Goel, N., Rao, H., Durmer, J. S. & Dinges, D. F. Neurocognitive consequences of sleep deprivation. Semin. Neurol.29, 320–339 (2009). PubMedPubMed Central Google Scholar
Doran, S. M., Van Dongen, H. P. & Dinges, D. F. Sustained attention performance during sleep deprivation: evidence of state instability. Arch. Ital. Biol.139, 253–267 (2001). CASPubMed Google Scholar
Van Dongen, H. P., Belenky, G. & Krueger, J. M. A local, bottom-up perspective on sleep deprivation and neurobehavioral performance. Curr. Top. Med. Chem.11, 2414–2422 (2011). CASPubMedPubMed Central Google Scholar
Piantoni, G. et al. Individual differences in white matter diffusion affect sleep oscillations. J. Neurosci.33, 227–233 (2013). CASPubMedPubMed Central Google Scholar
Leger, J. F., Stern, E. A., Aertsen, A. & Heck, D. Synaptic integration in rat frontal cortex shaped by network activity. J. Neurophysiol.93, 281–293 (2005). PubMed Google Scholar
Petersen, C. C., Hahn, T. T., Mehta, M., Grinvald, A. & Sakmann, B. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc. Natl Acad. Sci. USA100, 13638–13643 (2003). CASPubMedPubMed Central Google Scholar
Constantinople, C. M. & Bruno, R. M. Effects and mechanisms of wakefulness on local cortical networks. Neuron69, 1061–1068 (2011). CASPubMedPubMed Central Google Scholar
Krueger, J. M. et al. Sleep as a fundamental property of neuronal assemblies. Nature Rev. Neurosci.9, 910–919 (2008). CAS Google Scholar
Rattenborg, N. C., Lima, S. L. & Lesku, J. A. Sleep locally, act globally. Neuroscientist18, 533–546 (2012). PubMed Google Scholar
Borbely, A. A. A two process model of sleep regulation. Hum. Neurobiol.1, 195–204 (1982). CASPubMed Google Scholar
Borbély, A. A. & Achermann, P. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 405–417 (Saunders, 2005). Google Scholar
Ferrara, M., De Gennaro, L., Casagrande, M. & Bertini, M. Auditory arousal thresholds after selective slow-wave sleep deprivation. Clin. Neurophysiol.110, 2148–2152 (1999). CASPubMed Google Scholar
Daan, S., Beersma, D. G. & Borbely, A. A. Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol.246, R161–R183 (1984). CASPubMed Google Scholar
Achermann, P., Dijk, D. J., Brunner, D. P. & Borbely, A. A. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res. Bull.31, 97–113 (1993). CASPubMed Google Scholar
Franken, P., Chollet, D. & Tafti, M. The homeostatic regulation of sleep need is under genetic control. J. Neurosci.21, 2610–2621 (2001). CASPubMedPubMed Central Google Scholar
Tobler, I. & Borbely, A. A. Sleep EEG in the rat as a function of prior waking. Electroencephalogr. Clin. Neurophysiol.64, 74–76 (1986). CASPubMed Google Scholar
Vyazovskiy, V. V., Achermann, P. & Tobler, I. Sleep homeostasis in the rat in the light and dark period. Brain Res. Bull.74, 37–44 (2007). CASPubMed Google Scholar
Vyazovskiy, V., Borbely, A. A. & Tobler, I. Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. J. Sleep Res.9, 367–371 (2000). CASPubMed Google Scholar
Kristiansen, K. & Courtois, G. Rhythmic electrical activity from isolated cerebral cortex. Electroencephalogr. Clin. Neurophysiol.1, 265–272 (1949). CASPubMed Google Scholar
Krueger, J. M. & Obal, F. A neuronal group theory of sleep function. J. Sleep Res.2, 63–69 (1993). CASPubMed Google Scholar
Pigarev, I. N., Nothdurft, H. C. & Kastner, S. Evidence for asynchronous development of sleep in cortical areas. Neuroreport8, 2557–2560 (1997). CASPubMed Google Scholar
Mukhametov, L. M., Supin, A. Y. & Polyakova, I. G. Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res.134, 581–584 (1977). CASPubMed Google Scholar
Lyamin, O. I., Pavlova, I. F., Kosenko, P. O., Mukhametov, L. M. & Siegel, J. M. Regional differences in cortical electroencephalogram (EEG) slow wave activity and interhemispheric EEG asymmetry in the fur seal. J. Sleep Res.21, 603–611 (2012). PubMed Google Scholar
Werth, E., Achermann, P. & Borbely, A. A. Brain topography of the human sleep EEG: antero-posterior shifts of spectral power. Neuroreport8, 123–127 (1996). CASPubMed Google Scholar
Cajochen, C., Foy, R. & Dijk, D. J. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res. Online2, 65–69 (1999). CASPubMed Google Scholar
Huber, R., Deboer, T. & Tobler, I. Topography of EEG dynamics after sleep deprivation in mice. J. Neurophysiol.84, 1888–1893 (2000). CASPubMed Google Scholar
Vyazovskiy, V. V. & Tobler, I. Regional differences in NREM sleep slow-wave activity in mice with congenital callosal dysgenesis. J. Sleep Res.14, 299–304 (2005). PubMed Google Scholar
Vyazovskiy, V. V., Borbely, A. A. & Tobler, I. Interhemispheric sleep EEG asymmetry in the rat is enhanced by sleep deprivation. J. Neurophysiol.88, 2280–2286 (2002). PubMed Google Scholar
Achermann, P., Finelli, L. A. & Borbely, A. A. Unihemispheric enhancement of delta power in human frontal sleep EEG by prolonged wakefulness. Brain Res.913, 220–223 (2001). CASPubMed Google Scholar
Destexhe, A., Contreras, D. & Steriade, M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci.19, 4595–4608 (1999). CASPubMedPubMed Central Google Scholar
Volgushev, M., Chauvette, S., Mukovski, M. & Timofeev, I. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected]. J. Neurosci.26, 5665–5672 (2006). CASPubMedPubMed Central Google Scholar
Luczak, A., Bartho, P., Marguet, S. L., Buzsaki, G. & Harris, K. D. Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl Acad. Sci. USA104, 347–352 (2007). CASPubMed Google Scholar
Mohajerani, M. H., McVea, D. A., Fingas, M. & Murphy, T. H. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J. Neurosci.30, 3745–3751 (2010). CASPubMedPubMed Central Google Scholar
Sirota, A. & Buzsaki, G. Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus Relat. Syst.3, 245–259 (2005). PubMedPubMed Central Google Scholar
Vyazovskiy, V. V., Faraguna, U., Cirelli, C. & Tononi, G. Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J. Neurophysiol.101, 1921–1931 (2009). PubMedPubMed Central Google Scholar
Kattler, H., Dijk, D. J. & Borbely, A. A. Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J. Sleep Res.3, 159–164 (1994). CASPubMed Google Scholar
Vyazovskiy, V. V., Welker, E., Fritschy, J. M. & Tobler, I. Regional pattern of metabolic activation is reflected in the sleep EEG after sleep deprivation combined with unilateral whisker stimulation in mice. Eur. J. Neurosci.20, 1363–1370 (2004). PubMed Google Scholar
Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. Local sleep and learning. Nature430, 78–81 (2004). CASPubMed Google Scholar
Vyazovskiy, V. V. & Tobler, I. Handedness leads to interhemispheric EEG asymmetry during sleep in the rat. J. Neurophysiol.99, 969–975 (2008). CASPubMed Google Scholar
Miyamoto, H., Katagiri, H. & Hensch, T. Experience-dependent slow-wave sleep development. Nature Neurosci.6, 553–554 (2003). CASPubMed Google Scholar
Dang-Vu, T. T. et al. Neuroimaging in sleep medicine. Sleep Med.8, 349–372 (2007). PubMed Google Scholar
Hofle, N. et al. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J. Neurosci.17, 4800–4808 (1997). CASPubMedPubMed Central Google Scholar
Vyazovskiy, V., Achermann, P., Borbely, A. A. & Tobler, I. Interhemispheric coherence of the sleep electroencephalogram in mice with congenital callosal dysgenesis. Neuroscience124, 481–488 (2004). CASPubMed Google Scholar
Riedner, B. A. et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep30, 1643–1657 (2007). PubMedPubMed Central Google Scholar
Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol.67, 225–257 (2005). PubMed Google Scholar
Kourtis, N. & Tavernarakis, N. Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J.30, 2520–2531 (2011). CASPubMedPubMed Central Google Scholar
Martindale, J. L. & Holbrook, N. J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol.192, 1–15 (2002). CASPubMed Google Scholar
Richter, K., Haslbeck, M. & Buchner, J. The heat shock response: life on the verge of death. Mol. Cell40, 253–266 (2010). CASPubMed Google Scholar
Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science334, 1081–1086 (2011). CASPubMed Google Scholar
Groenendyk, J. Sreenivasaiah, P. K., Kim do, H., Agellon, L. B. & Michalak, M. Biology of endoplasmic reticulum stress in the heart. Circ. Res.107, 1185–1197 (2010). CASPubMed Google Scholar
Doyle, K. M. et al. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J. Cell. Mol. Med.15, 2025–2039 (2011). CASPubMedPubMed Central Google Scholar
Allen, D. G., Lamb, G. D. & Westerblad, H. Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev.88, 287–332 (2008). CASPubMed Google Scholar
Garland, S. J. & Gossen, E. R. The muscular wisdom hypothesis in human muscle fatigue. Exerc. Sport Sci. Rev.30, 45–49 (2002). PubMed Google Scholar
Powers, S. K. & Jackson, M. J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev.88, 1243–1276 (2008). CASPubMed Google Scholar
Westerblad, H. & Allen, D. G. Emerging roles of ROS/RNS in muscle function and fatigue. Antioxid. Redox Signal.15, 2487–2499 (2011). CASPubMed Google Scholar
Keyser, R. E. Peripheral fatigue: high-energy phosphates and hydrogen ions. PM R2, 347–358 (2010). PubMed Google Scholar
Fitts, R. H. The cross-bridge cycle and skeletal muscle fatigue. J. Appl. Physiol.104, 551–558 (2008). CASPubMed Google Scholar
Debold, E. P. Recent insights into muscle fatigue at the cross-bridge level. Front. Physiol.3, 151 (2012). PubMedPubMed Central Google Scholar
Salo, D. C., Donovan, C. M. & Davies, K. J. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic. Biol. Med.11, 239–246 (1991). CASPubMed Google Scholar
MacIntosh, B. R., Holash, R. J. & Renaud, J. M. Skeletal muscle fatigue-regulation of excitation-contraction coupling to avoid metabolic catastrophe. J. Cell Sci.125, 2105–2114 (2012). CASPubMed Google Scholar
Wu, J. et al. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α/ATF6α complex. Cell Metab.13, 160–169 (2011). CASPubMedPubMed Central Google Scholar
Cirelli, C., Gutierrez, C. M. & Tononi, G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron41, 35–43 (2004). CASPubMed Google Scholar
Naidoo, N., Giang, W., Galante, R. J. & Pack, A. I. Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J. Neurochem.92, 1150–1157 (2005). CASPubMed Google Scholar
Terao, A. et al. Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience116, 187–200 (2003). CASPubMed Google Scholar
Shaw, P. J., Tononi, G., Greenspan, R. J. & Robinson, D. F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature417, 287–291 (2002). CASPubMed Google Scholar
Franken, P., Dijk, D. J., Tobler, I. & Borbely, A. A. Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am. J. Physiol.261, R198–R208 (1991). CASPubMed Google Scholar
Nikonova, E. V. et al. Changes in components of energy regulation in mouse cortex with increases in wakefulness. Sleep33, 889–900 (2010). PubMedPubMed Central Google Scholar
Esposito, G., Ana Clara, F. & Verstreken, P. Synaptic vesicle trafficking and Parkinson's disease. Dev. Neurobiol.72, 134–144 (2011). Google Scholar
Vanden Berghe, P. & Klingauf, J. Synaptic vesicles in rat hippocampal boutons recycle to different pools in a use-dependent fashion. J. Physiol.572, 707–720 (2006). CASPubMedPubMed Central Google Scholar
Attwell, D. & Gibb, A. Neuroenergetics and the kinetic design of excitatory synapses. Nature Rev. Neurosci.6, 841–849 (2005). CAS Google Scholar
Hinard, V. et al. Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J. Neurosci.32, 12506–12517 (2012). CASPubMedPubMed Central Google Scholar
Cirelli, C., Shaw, P. J., Rechtschaffen, A. & Tononi, G. No evidence of brain cell degeneration after long-term sleep deprivation in rats. Brain Res.840, 184–193 (1999). CASPubMed Google Scholar
Gopalakrishnan, A., Ji, L. L. & Cirelli, C. Sleep deprivation and cellular responses to oxidative stress. Sleep27, 27–35 (2004). PubMed Google Scholar
Vyazovskiy, V. V. & Tobler, I. Theta activity in the waking EEG is a marker of sleep propensity in the rat. Brain Res.1050, 64–71 (2005). CASPubMed Google Scholar
Okun, M., Naim, A. & Lampl, I. The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J. Neurosci.30, 4440–4448 (2010). CASPubMedPubMed Central Google Scholar
Cajochen, C., Wyatt, J. K., Czeisler, C. A. & Dijk, D. J. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness. Neuroscience114, 1047–1060 (2002). CASPubMed Google Scholar
Finelli, L. A., Baumann, H., Borbely, A. A. & Achermann, P. Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience101, 523–529 (2000). CASPubMed Google Scholar
Landolt, H. P. et al. Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology29, 1933–1939 (2004). CASPubMed Google Scholar
Leemburg, S. et al. Sleep homeostasis in the rat is preserved during chronic sleep restriction. Proc. Natl Acad. Sci. USA107, 15939–15944 (2010). CASPubMedPubMed Central Google Scholar
Hung, C. S. et al. Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep36, 59–72 (2013). PubMedPubMed Central Google Scholar
Crochet, S. & Petersen, C. C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature Neurosci.9, 608–610 (2006). CASPubMed Google Scholar
Haider, B., Duque, A., Hasenstaub, A. R., Yu, Y. & McCormick, D. A. Enhancement of visual responsiveness by spontaneous local network activity in vivo. J. Neurophysiol.97, 4186–4202 (2007). PubMed Google Scholar
Hasenstaub, A., Sachdev, R. N. & McCormick, D. A. State changes rapidly modulate cortical neuronal responsiveness. J. Neurosci.27, 9607–9622 (2007). CASPubMedPubMed Central Google Scholar
Sachdev, R. N., Ebner, F. F. & Wilson, C. J. Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J. Neurophysiol.92, 3511–3521 (2004). PubMed Google Scholar
Vyazovskiy, V. V., Olcese, U., Cirelli, C. & Tononi, G. Prolonged wakefulness alters neuronal responsiveness to local electrical stimulation of the neocortex in awake rats. J. Sleep Res. 21 Nov 2012 (doi:10.1111/jsr.12009). Google Scholar
Luczak, A., Bartho, P. & Harris, K. D. Gating of sensory input by spontaneous cortical activity. J. Neurosci.33, 1684–1695 (2013). CASPubMedPubMed Central Google Scholar
Goard, M. & Dan, Y. Basal forebrain activation enhances cortical coding of natural scenes. Nature Neurosci.12, 1444–1449 (2009). CASPubMed Google Scholar
Marguet, S. L. & Harris, K. D. State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex. J. Neurosci.31, 6414–6420 (2011). CASPubMedPubMed Central Google Scholar
Aeschbach, D. et al. Dynamics of the human EEG during prolonged wakefulness: evidence for frequency-specific circadian and homeostatic influences. Neurosci. Lett.239, 121–124 (1997). CASPubMed Google Scholar
Cajochen, C., Brunner, D. P., Krauchi, K., Graw, P. & Wirz-Justice, A. Power density in theta/α frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep18, 890–894 (1995). CASPubMed Google Scholar
Oleksenko, A. I., Mukhametov, L. M., Polyakova, I. G., Supin, A. Y. & Kovalzon, V. M. Unihemispheric sleep deprivation in bottlenose dolphins. J. Sleep Res.1, 40–44 (1992). CASPubMed Google Scholar
Lyamin, O. I., Kosenko, P. O., Lapierre, J. L., Mukhametov, L. M. & Siegel, J. M. Fur seals display a strong drive for bilateral slow-wave sleep while on land. J. Neurosci.28, 12614–12621 (2008). CASPubMedPubMed Central Google Scholar
Sanchez-Vives, M. V. et al. Inhibitory modulation of cortical up states. J. Neurophysiol.104, 1314–1324 (2010). PubMed Google Scholar
Chen, J. Y., Chauvette, S., Skorheim, S., Timofeev, I. & Bazhenov, M. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation. J. Physiol.590, 3987–4010 (2012). CASPubMedPubMed Central Google Scholar
Lamb, G. D. & Westerblad, H. Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. J. Physiol.589, 2119–2127 (2011). CASPubMed Google Scholar
Wang, T. A. et al. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science337, 839–842 (2012). CASPubMedPubMed Central Google Scholar
Kapas, L., Obal, F. Jr & Krueger, J. M. Humoral regulation of sleep. Int. Rev. Neurobiol.35, 131–160 (1993). CASPubMed Google Scholar
Obal, F. Jr & Krueger, J. M. Biochemical regulation of non-rapid-eye-movement sleep. Front. Biosci8, d520–550 (2003). CASPubMed Google Scholar
Porkka-Heiskanen, T. et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science276, 1265–1268 (1997). CASPubMedPubMed Central Google Scholar
Latini, S. & Pedata, F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J. Neurochem.79, 463–484 (2001). CASPubMed Google Scholar
Krueger, J. M., Obal, F. J., Fang, J., Kubota, T. & Taishi, P. The role of cytokines in physiological sleep regulation. Ann. NY Acad. Sci.933, 211–221 (2001). CASPubMed Google Scholar
Kilduff, T. S., Cauli, B. & Gerashchenko, D. Activation of cortical interneurons during sleep: an anatomical link to homeostatic sleep regulation? Trends Neurosci.34, 10–19 (2011). CASPubMed Google Scholar
Kang, J. E. et al. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science326, 1005–1007 (2009). CASPubMedPubMed Central Google Scholar
Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E. & McCarley, R. W. Control of sleep and wakefulness. Physiol. Rev.92, 1087–1187 (2012). CASPubMed Google Scholar
Kamenetz, F. et al. APP processing and synaptic function. Neuron37, 925–937 (2003). CASPubMed Google Scholar
Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J. & Scammell, T. E. Sleep state switching. Neuron68, 1023–1042 (2010). CASPubMedPubMed Central Google Scholar
Battaglia, F. P., Sutherland, G. R. & McNaughton, B. L. Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn. Mem.11, 697–704 (2004). PubMedPubMed Central Google Scholar
Sirota, A., Csicsvari, J., Buhl, D. & Buzsaki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl Acad. Sci. USA100, 2065–2069 (2003). CASPubMedPubMed Central Google Scholar
Isomura, Y. et al. Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron52, 871–882 (2006). CASPubMed Google Scholar
Ros, H., Sachdev, R. N., Yu, Y., Sestan, N. & McCormick, D. A. Neocortical networks entrain neuronal circuits in cerebellar cortex. J. Neurosci.29, 10309–10320 (2009). CASPubMedPubMed Central Google Scholar
Timofeev, I. & Steriade, M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J. Neurophysiol.76, 4152–4168 (1996). CASPubMed Google Scholar
Cowan, R. L. & Wilson, C. J. Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J. Neurophysiol.71, 17–32 (1994). CASPubMed Google Scholar
Lancel, M., van Riezen, H. & Glatt, A. Enhanced slow-wave activity within NREM sleep in the cortical and subcortical EEG of the cat after sleep deprivation. Sleep15, 102–118 (1992). CASPubMed Google Scholar
Khazipov, R. & Luhmann, H. J. Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci.29, 414–418 (2006). CASPubMed Google Scholar
Nelson, A. B., Faraguna, U., Tononi, G. & Cirelli, C. Effects of anesthesia on the response to sleep deprivation. Sleep33, 1659–1667 (2010). PubMedPubMed Central Google Scholar
Cirelli, C. & Tononi, G. Gene expression in the brain across the sleep-waking cycle. Brain Res.885, 303–321 (2000). CASPubMed Google Scholar
Vyazovskiy, V. V., Ruijgrok, G., Deboer, T. & Tobler, I. Running wheel accessibility affects the regional electroencephalogram during sleep in mice. Cereb. Cortex16, 328–336 (2006). PubMed Google Scholar
Vyazovskiy, V. V. & Tobler, I. The temporal structure of behaviour and sleep homeostasis. PLoS ONE7, e50677 (2012). CASPubMedPubMed Central Google Scholar
Kim, Y., Park, M., Boghossian, S. & York, D. A. Three weeks voluntary running wheel exercise increases endoplasmic reticulum stress in the brain of mice. Brain Res.1317, 13–23 (2010). CASPubMed Google Scholar
Churchill, L. et al. Tumor necrosis factor α: activity dependent expression and promotion of cortical column sleep in rats. Neuroscience156, 71–80 (2008). CASPubMed Google Scholar
Xue, X. et al. Tumor necrosis factor α (TNFα) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFα. J. Biol. Chem.280, 33917–33925 (2005). CASPubMed Google Scholar
Roussel, B. D. et al. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol.12, 105–118 (2013). CASPubMed Google Scholar
Du, F., Eid, T., Lothman, E. W., Kohler, C. & Schwarcz, R. Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy. J. Neurosci.15, 6301–6313 (1995). CASPubMedPubMed Central Google Scholar
Drexel, M., Preidt, A. P. & Sperk, G. Sequel of spontaneous seizures after kainic acid-induced status epilepticus and associated neuropathological changes in the subiculum and entorhinal cortex. Neuropharmacology63, 806–817 (2012). CASPubMedPubMed Central Google Scholar
Fritsch, B. et al. Pathological alterations in GABAergic interneurons and reduced tonic inhibition in the basolateral amygdala during epileptogenesis. Neuroscience163, 415–429 (2009). CASPubMed Google Scholar
Arundine, M. & Tymianski, M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium34, 325–337 (2003). CASPubMed Google Scholar
Brennan, G. P. et al. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo. PLoS ONE8, e54491 (2013). CASPubMedPubMed Central Google Scholar
Murphy, N. et al. Depletion of 14-3-3 zeta elicits endoplasmic reticulum stress and cell death, and increases vulnerability to kainate-induced injury in mouse hippocampal cultures. J. Neurochem.106, 978–988 (2008). CASPubMed Google Scholar
Dauvilliers, Y. Insomnia in patients with neurodegenerative conditions. Sleep Med.8, S27–S34 (2007). PubMed Google Scholar
Frank, M. G. & Heller, H. C. The ontogeny of mammalian sleep: a reappraisal of alternative hypotheses. J. Sleep Res.12, 25–34 (2003). PubMed Google Scholar
Corner, M. & van der Togt, C. No phylogeny without ontogeny: a comparative and developmental search for the sources of sleep-like neural and behavioral rhythms. Neurosci. Bull.28, 25–38 (2012). PubMedPubMed Central Google Scholar
Blumberg, M. S. Homology, correspondence, and continuity across development: the case of sleep. Dev. Psychobiol.55, 92–100 (2013). PubMed Google Scholar
Khazipov, R. et al. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature432, 758–761 (2004). CASPubMed Google Scholar
Dreyfus-Brisac, C. & Larroche, J. C. Discontinuous electroencephalograms in the premature newborn and at term. Electro-anatomo-clinical correlations. Rev. Electroencephalogr. Neurophysiol. Clin.1, 95–99 (1971) (in French). CASPubMed Google Scholar
Andre, M. et al. Electroencephalography in premature and full-term infants. Developmental features and glossary. Neurophysiol. Clin.40, 59–124 (2010). CASPubMed Google Scholar
Kroeger, D. & Amzica, F. Hypersensitivity of the anesthesia-induced comatose brain. J. Neurosci.27, 10597–10607 (2007). CASPubMedPubMed Central Google Scholar
Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science274, 1133–1138 (1996). CASPubMed Google Scholar
Frank, M. G. & Heller, H. C. Development of diurnal organization of EEG slow-wave activity and slow-wave sleep in the rat. Am. J. Physiol.273, R472–R478 (1997). CASPubMed Google Scholar
Alfoldi, P., Tobler, I. & Borbely, A. A. Sleep regulation in rats during early development. Am. J. Physiol.258, R634–R644 (1990). CASPubMed Google Scholar
Kurth, S. et al. Characteristics of sleep slow waves in children and adolescents. Sleep33, 475–480 (2010). PubMedPubMed Central Google Scholar
Kurth, S. et al. Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study. J. Neurosci.30, 13211–13219 (2010). CASPubMedPubMed Central Google Scholar
Jenni, O. G. & Carskadon, M. A. Spectral analysis of the sleep electroencephalogram during adolescence. Sleep27, 774–783 (2004). PubMed Google Scholar
Ohayon, M. M., Carskadon, M. A., Guilleminault, C. & Vitiello, M. V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep27, 1255–1273 (2004). PubMed Google Scholar
Maret, S., Faraguna, U., Nelson, A. B., Cirelli, C. & Tononi, G. Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nature Neurosci.14, 1418–1420 (2011). CASPubMed Google Scholar
Shahbazian, F. M., Jacobs, M. & Lajtha, A. Regional and cellular differences in rat brain protein synthesis in vivo and in slices during development. Int. J. Dev. Neurosci.4, 209–215 (1986). CASPubMed Google Scholar
Sun, Y. et al. Rates of local cerebral protein synthesis in the rat during normal postnatal development. Am. J. Physiol.268, R549–R561 (1995). CASPubMed Google Scholar
Giuffrida, A. M. et al. Mitochondrial DNA, RNA, and protein synthesis in different regions of developing rat brain. Neurochem. Res.4, 37–52 (1979). CASPubMed Google Scholar
Lerner, M. P. & Johnson, T. C. Regulation of protein synthesis in developing mouse brain tissue. Alteration in ribosomal activity. J. Biol. Chem.245, 1388–1393 (1970). CASPubMed Google Scholar
Zhang, X., Szabo, E., Michalak, M. & Opas, M. Endoplasmic reticulum stress during the embryonic development of the central nervous system in the mouse. Int. J. Dev. Neurosci.25, 455–463 (2007). PubMed Google Scholar