Specification of catecholaminergic and serotonergic neurons (original) (raw)
Björklund, A. & Hökfelt, T. Handbook of Chemical Neuroanatomy (Elsevier, Amsterdam, 1984). Google Scholar
Niewenhuys, R. Chemoarchitecture of the Brain (Springer, Berlin, 1985). Book Google Scholar
Cooper, J. R. Bloom, F. E. & Roth, R. H. The Biochemical Basis of Neuropharmacology (Oxford Univ. Press, New York, 1977). Google Scholar
Hynes, M. & Rosenthal, A. Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr. Opin. Neurobiol.9, 26–36 (1999). ArticleCASPubMed Google Scholar
Paxinos, G. The Rat Nervous System (Academic, San Diego, 1995). Google Scholar
Landis, S. C. Target regulation of neurotransmitter phenotype. Trends Neurosci.13, 344–350 (1990). ArticleCASPubMed Google Scholar
Francis, N. J. & Landis, S. C. Cellular and molecular determinants of sympathetic neuron development. Annu. Rev. Neurosci. 22, 541–566 (1999).
Ernsberger, U. & Rohrer, H. Development of the cholinergic neurotransmitter phenotype in postganglionic sympathetic neurons. Cell Tissue Res.297, 339–361 (1999). ArticleCASPubMed Google Scholar
Guillemot, F. et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell75, 463–476 (1993).This paper provides the first genetic evidence for the essential role of Mash1 in sympathetic-neuron development. ArticleCASPubMed Google Scholar
Ernsberger, U. et al. The expression of tyrosine hydroxylase and the transcription factors cPhox-2 and Cash-1: evidence for distinct inductive steps in the differentiation of chick sympathetic precursor cells. Mech. Dev.52, 125–136 (1995). ArticleCASPubMed Google Scholar
Groves, A. K. et al. Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons. Development121, 887–901 (1995). ArticleCASPubMed Google Scholar
Hirsch, M. R., Tiveron, M.-C., Guillemot, F., Brunet, J.-F. & Goridis, C. Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development125, 599–608 (1998).This paper, together with reference9, provides genetic evidence for the essential role of Mash1 in peripheral and central NA differentiation, acting independently of Phox2b. ArticleCASPubMed Google Scholar
Varley, J. E., Wehby, R. G., Rueger, D. C. & Maxwell, G. D. Number of adrenergic and islet-1 immunoreactive cells is increased in avian trunk neural crest cell cultures in the presence of human recombinant osteogenic protein-1. Dev. Dyn.203, 434–447 (1995). ArticleCASPubMed Google Scholar
Lo, L., Tiveron, M.-C. & Anderson, D. J. MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development125, 609–620 (1998). ArticleCASPubMed Google Scholar
Reissmann, E. et al. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development122, 2079–2088 (1996). ArticleCASPubMed Google Scholar
Shah, N. M., Groves, A. K. & Anderson, D. J. Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members. Cell85, 331–343 (1996). ArticleCASPubMed Google Scholar
Varley, J. E. & Maxwell, G. D. BMP2 and BMP4, but not BMP6 increase the number of adrenergic cells which develop in quail trunk neural crest cultures. Exp. Neurol.140, 84–94 (1996). ArticleCASPubMed Google Scholar
Varley, J. E., McPherson, C. E., Zou, H., Niswander, L. & Maxwell, G. D. Expression of a constitutively active type I BMP receptor using a retroviral vector promotes the development of adrenergic cells in neural crest cultures. Dev. Biol.196, 107–118 (1998). ArticleCASPubMed Google Scholar
Schneider, C., Wicht, H., Enderich, J., Wegner, M. & Rohrer, H. Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron24, 861–870 (1999).This paper providesin vivoevidence for the essential role of BMPs in the development of peripheral NA neurons. ArticleCASPubMed Google Scholar
Tiveron, M.-C., Hirsch, M.-R. & Brunet, J.-F. The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J. Neurosci.16, 7649–7660 (1996). ArticleCASPubMedPubMed Central Google Scholar
Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.-F. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development124, 4065–4075 (1997). ArticleCASPubMed Google Scholar
Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.-F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature399, 366–370 (1999).This paper presents genetic evidence for the crucial role of Phox2b in the development of peripheral NA neurons. ArticleCASPubMed Google Scholar
Stanke, M. et al. The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development126, 4087–4094 (1999).This study, together with reference32, makes use of GOF methods to show that Phox2a and Phox2b are sufficient to initiate sympathetic-neuron development. ArticleCASPubMed Google Scholar
Morin, X. et al. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron18, 411–423 (1997).This paper shows the dependence of LC development on Phox2a. ArticleCASPubMed Google Scholar
Swanson, D. J., Zellmer, E. & Lewis, E. J. The homeodomain protein Arix interacts synergistically with cyclic AMP to regulate expression of neurotransmitter biosynthetic genes. J. Biol. Chem.272, 27382–27392 (1997). ArticleCASPubMed Google Scholar
Yang, C. et al. Paired-like homeodomain proteins, Phox2a and Phox2b, are responsible for noradrenergic cell-specific transcription of the dopamine β-hydroxylase gene. J. Neurochem.71, 1813–1826 (1998). ArticleCASPubMed Google Scholar
Kim, H. S., Seo, H., Yang, C., Brunet, J.-F. & Kim, K. S. Noradrenergic-specific transcription of the dopamine β-hydroxylase gene requires synergy of multiple _cis_-acting elements including at least two Phox2a-binding sites. J. Neurosci.18, 8247–8260 (1998). ArticleCASPubMedPubMed Central Google Scholar
Adachi, M., Browne, D. & Lewis, E. J. Paired-like homeodomain proteins Phox2a/Arix and Phox2b/NBPhox have similar genetic organization and independently regulate dopamine β-hydroxylase gene transcription. DNA Cell Biol.19, 539–554 (2000). ArticleCASPubMed Google Scholar
Swanson, D. J., Adachi, M. & Lewis, E. J. The homeodomain protein Arix promotes protein kinase A-dependent activation of the dopamine β-hydroxylase promoter through multiple elements and interaction with the coactivator cAMP-response element-binding protein-binding protein. J. Biol. Chem.275, 2911–2923 (2000). ArticleCASPubMed Google Scholar
Seo, H. et al. A direct role of the homeodomain proteins, Phox2a/b, in noradrenaline neurotransmitter identity determination. J. Neurochem.80, 905–916 (2002). ArticleCASPubMed Google Scholar
Zellmer, E. et al. A homeodomain protein selectively expressed in noradrenergic tissue regulates transcription of neurotransmitter biosynthetic genes. J. Neurosci.15, 8109–8120 (1995). ArticleCASPubMedPubMed Central Google Scholar
Lo, L., Morin, X., Brunet, J.-F. & Anderson, D. J. Specification of neurotransmitter identity by Phox2 proteins in neural crest stem cells. Neuron22, 693–705 (1999).This paper makes use of GOF methods to show that Phox2 genes are sufficient to initiate sympathetic-neuron development. It also provides evidence that implicates cAMP signalling in this process. ArticleCASPubMed Google Scholar
Pattyn, A., Hirsch, M.-R., Goridis, C. & Brunet, J.-F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development127, 1349–1358 (2000). ArticleCASPubMed Google Scholar
Howard, M., Foster, D. N. & Cserjesi, P. Expression of HAND gene products may be sufficient for the differentiation of avian neural crest-derived cells into catecholaminergic neurons in culture. Dev. Biol.215, 62–77 (1999). ArticleCASPubMed Google Scholar
Howard, M. J., Stanke, M., Schneider, C., Wu, X. & Rohrer, H. The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification. Development127, 4073–4081 (2000).This study makes use of GOF methods to show the involvement of dHand in the development of sympathetic neurons. ArticleCASPubMed Google Scholar
Anderson, D. J. & Jan, Y. N. The Determination of the Neuronal Phenotype (Oxford Univ. Press, Oxford, UK, 1998). Book Google Scholar
Srivastava, D. et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nature Genet.16, 154–160 (1997). ArticleCASPubMed Google Scholar
Lim, K. C. et al. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature Genet.25, 209–212 (2000).This paper provides genetic evidence for a role of Gata3 in NA differentiation of the sympathetic lineage, but not in generic neuronal differentiation. ArticleCASPubMed Google Scholar
Pacholczyk, T., Blakely, R. D. & Amara, S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature350, 350–354 (1991). ArticleCASPubMed Google Scholar
Rohrer, H. Non-neuronal cells from chick sympathetic and dorsal root sensory ganglia express catecholamine uptake and receptors for nerve growth factor during development. Dev. Biol.111, 95–107 (1985). ArticleCAS Google Scholar
Kim, C. H., Kim, H. S., Cubells, J. F. & Kim, K. S. A previously undescribed intron and extensive 5′ upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J. Biol. Chem.274, 6507–6518 (1999). ArticleCASPubMed Google Scholar
Taber Pierce, E. Time of origin of neurons in the brain stem of the mouse. Prog. Brain Res.40, 53–65 (1973). Article Google Scholar
Steindler, D. A. & Trosko, B. K. Two types of locus coeruleus neurons born on different embryonic days in the mouse. Anat. Embryol. (Berl.)179, 423–434 (1989). ArticleCAS Google Scholar
Pattyn, A., Goridis, C. & Brunet, J.-F. Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol. Cell. Neurosci.15, 235–243 (2000).This paper provides evidence for the essential role of Phox2b in LC development, acting downstream of Phox2a. ArticleCASPubMed Google Scholar
Vogel-Höpker, A. & Rohrer, H. The specification of noradrenergic locus coeruleus neurons depends on bone morphogenetic proteins. Development129, 983–991 (2002).This paper, together with reference48, presentsin vivoevidence for a role of BMPs in the development of central NA neurons. ArticlePubMed Google Scholar
Liem, K. F. Jr, Tremml, G., Roelink, H. & Jessell, T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell82, 969–979 (1995). ArticleCASPubMed Google Scholar
Altmann, C. R. & Brivanlou, A. H. Neural patterning in the vertebrate embryo. Int. Rev. Cytol.203, 447–482 (2001). ArticleCASPubMed Google Scholar
Guo, S. et al. Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron24, 555–566 (1999).This study provides genetic evidence in zebrafish for the involvement of BMPs, FGF8 and Phox2a in LC development. ArticleCASPubMed Google Scholar
Barth, K. A. et al. Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development126, 4977–4987 (1999). ArticleCASPubMed Google Scholar
Wurst, W. & Bally-Cuif, L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nature Rev. Neurosci.2, 99–108 (2001). ArticleCAS Google Scholar
Qian, Y. et al. Formation of brainstem (nor)adrenergic centers and first-order relay visceral neurons is dependent on homeodomain protein Rnx/Tlx3. Genes Dev.15, 2533–2545 (2001).This study shows that most central NA neurons depend on Rnx3, which acts independently of Phox2a. ArticleCASPubMedPubMed Central Google Scholar
Logan, C., Wingate, R. J. T. McKay, I. J. & Lumsden, A. Tlx-1 and Tlx-3 homeobox gene expression in cranial sensory ganglia and hindbrain of the chick embryo: markers of patterned connectivity. J. Neurosci.18, 5389–5402 (1998). ArticleCASPubMedPubMed Central Google Scholar
Di Porzio, U., Zuddas, A., Cosenza-Murphy, D. B. & Barker, J. L. Early appearance of tyrosine hydroxylase immunoreactive cells in the mesencephalon of mouse embryos. Int. J. Dev. Neurosci.8, 523–532 (1990). ArticleCASPubMed Google Scholar
Placzek, M. The role of the notochord and floor plate in inductive interactions. Curr. Opin. Genet. Dev.5, 499–506 (1995). ArticleCASPubMed Google Scholar
Matise, M. P., Epstein, D. J., Park, H. L., Platt, K. A. & Joyner, A. L. Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development125, 2759–2770 (1998). ArticleCASPubMed Google Scholar
Ye, W., Shimamura, K., Rubenstein, J. L., Hynes, M. A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell93, 755–766 (1998).This paper presents evidence for the role of extrinsic signals in providing positional information in the specification of DA and 5-HT neurons. ArticleCASPubMed Google Scholar
Semina, E. V., Murray, J. C., Reiter, R., Hrstka, R. F. & Graw, J. Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum. Mol. Genet.9, 1575–1585 (2000). ArticleCASPubMed Google Scholar
Rieger, D. K., Reichenberger, E., McLean, W., Sidow, A. & Olsen, B. R. A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice. Genomics72, 61–72 (2001). ArticleCASPubMed Google Scholar
Smidt, M. P. et al. A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc. Natl Acad. Sci. USA94, 13305–13310 (1997). ArticleCASPubMedPubMed Central Google Scholar
Wallen, A. et al. Fate of mesencephalic AHD2-expressing dopamine progenitor cells in Nurr1 mutant mice. Exp. Cell Res.253, 737–746 (1999). ArticleCASPubMed Google Scholar
Smid, M. P. et al. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nature Neurosci.3, 337–341 (2000).This study provides genetic evidence for the essential role of Lmx1b in DA-neuron development. Article Google Scholar
Zetterström, R. H. et al. Dopamine neuron agenesis in Nurr-1 deficient mice. Science276, 248–250 (1997). ArticlePubMed Google Scholar
Castillo, S. O. et al. Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Mol. Cell. Neurosci.11, 36–46 (1998). ArticleCASPubMed Google Scholar
Saucedo-Cardenas, O. et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl Acad. Sci. USA95, 4013–4018 (1998).Together with references62and63, this paper provides genetic evidence for a crucial role of Nurr1 in DA-neuron development. ArticleCASPubMedPubMed Central Google Scholar
Le, W.-D. et al. Selective agenesis of mesencephalic dopaminergic neurons in Nurr1-deficient mice. Exp. Neurol.159, 451–458 (1999). ArticleCASPubMed Google Scholar
Witta, J. et al. Nigrostriatal innervation is preserved in Nurr1-null mice, although dopaminergic neuron precursors are arrested from terminal differentiation. Brain Res. Mol. Brain Res.84, 67–78 (2000). ArticleCASPubMed Google Scholar
Zhou, Q.-Y. & Palmiter, R. D. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell83, 1197–1209 (1995). ArticleCASPubMed Google Scholar
Sacchetti, P., Mitchell, T. R., Granneman, J. G. & Bannon, M. J. Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J. Neurochem.76, 1565–1572 (2001). ArticleCASPubMed Google Scholar
Zetterström, R. H., Williams, R., Perlmann, T. & Olson, L. Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res. Mol. Brain Res.41, 111–120 (1996). ArticlePubMed Google Scholar
Wallen, A. et al. Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopaminergic neurons and in the brainstem. Mol. Cell. Neurosci.18, 649–663 (2001). ArticleCAS Google Scholar
Chen, H. et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nature Genet.19, 51–55 (1998). ArticlePubMed Google Scholar
Simon, H. H., Saueressig, H., Wurst, W., Goulding, M. D. & O'Leary, D. D. M. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J. Neurosci.21, 3126–3134 (2001). ArticleCASPubMedPubMed Central Google Scholar
McCaffery, P. & Dräger, U. C. High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc. Natl Acad. Sci. USA91, 7772–7776 (1994). ArticleCASPubMedPubMed Central Google Scholar
Haselbeck, R. J., Hoffmann, I. & Duester, G. Distinct functions for Aldh1 and Raldh2 in the control of ligand production for embryonic retinoid signaling pathways. Dev. Genet.25, 353–364 (1999). ArticleCASPubMedPubMed Central Google Scholar
Perlmann, T. & Jansson, L. A novel pathway for vitamin A signaling mediated by RXR heterodimerisation with NGFI-B and NURR1. Genes Dev.9, 769–782 (1995). ArticleCASPubMed Google Scholar
Castro, D. S. et al. Induction of cell cycle arrest and morphological differentiation by Nurr1 and retinoids in dopamine MN9D cells. J. Biol. Chem.276, 43277–43284 (2001). ArticleCASPubMed Google Scholar
Guo, S. et al. A regulator of transcriptional elongation controls vertebrate neuronal development. Nature408, 366–369 (2000). ArticleCASPubMed Google Scholar
Sakurada, K., Ohshima-Sakurada, M., Palmer, T. D. & Gage, F. H. Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development126, 4017–4026 (1999). ArticleCASPubMed Google Scholar
Cazorla, P., Smidt, M. P., O'Malley, K. L. & Burbach, J. P. H. A response element for the homeodomain transcription factor Ptx3 in the tyrosine hydroxylase gene promoter. J. Neurochem.74, 1829–1837 (2000). ArticleCASPubMed Google Scholar
Lebel, M., Gauthier, Y., Moreau, A. & Drouin, J. Pitx3 activates mouse tyrosine hydroxylase promoter via a high-affinity site. J. Neurochem.77, 558–567 (2001). ArticleCASPubMed Google Scholar
Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M. & McKay, R. D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnol.18, 675–679 (2000). ArticleCAS Google Scholar
Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron28, 31–40 (2000). ArticleCASPubMed Google Scholar
Wagner, J. et al. Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nature Biotechnol.17, 653–659 (1999). ArticleCAS Google Scholar
Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature398, 622–627 (1999).This paper shows that the correct development of 5-HT neurons depends on Nkx2.2. ArticleCASPubMed Google Scholar
Hendricks, T., Francis, N., Fyodorov, D. & Deneris, E. S. The ETS domain factor Pet-1 is an early and precise marker of central serotoninergic neurons and interacts with a conserved element in serotonergic genes. J. Neurosci.19, 10348–10356 (1999). ArticleCASPubMedPubMed Central Google Scholar
Pfaar, H. et al. mPet-1, a mouse ETS-domain transcription factor, is expressed in central serotonergic neurons. Dev. Genes Evol.212, 43–46 (2002). ArticleCASPubMed Google Scholar
Aitken, A. R. & Törk, I. Early development of serotonin-containing neurons and pathways as seen in wholemount preparations of the fetal rat brain. J. Comp. Neurol.274, 32–47 (1988). ArticleCASPubMed Google Scholar
Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell101, 435–445 (2000). ArticleCASPubMed Google Scholar
Shimamura, K., Hartigan, D. J., Martinez, S., Puelles, L. & Rubenstein, L. R. Longitudinal organization of the anterior neural plate and neural tube. Development121, 3923–3933 (1995). ArticleCASPubMed Google Scholar
Pata, I. et al. The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4. Development126, 5523–5531 (1999). ArticleCASPubMed Google Scholar
Hikke van Doorninck, J. et al. GATA3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci.19, RC12 (1999).This paper provides genetic evidence for a role of Gata3 in the differentiation of 5-HT neurons. ArticlePubMed Central Google Scholar
Lebrand, C. et al. Transient developmental expression of monoamine transporters in the rodent forebrain. J. Comp. Neurol.401, 506–524 (1998). ArticleCASPubMed Google Scholar
Hansson, S. R., Mezey, E. & Hofman, B. J. Serotonin transporter messenger RNA in the developing rat brain: early expression in serotonergic neurons and transient expression in non-serotonergic neurons. Neuroscience83, 1185–1201 (1998). ArticleCASPubMed Google Scholar
Zhou, Q., Choi, G. & Anderson, D. J. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron31, 791–807 (2001). ArticleCASPubMed Google Scholar
Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet.1, 20–29 (2000). ArticleCASPubMed Google Scholar
Marquardt, T. & Pfaff, S. L. Cracking the transcriptional code for cell specification in the neural tube. Cell106, 651–654 (2001). ArticleCASPubMed Google Scholar
Goridis, C. & Brunet, J.-F. Transcriptional control of neurotransmitter phenotype. Curr. Opin. Neurobiol.9, 47–53 (1999). ArticleCASPubMed Google Scholar
Brunet, J.-F. & Pattyn, A. Phox2 genes, from patterning to connectivity. Curr. Opin. Neurobiol. (in the press).