T cells as therapeutic targets in SLE (original) (raw)
Crispin, J. C. et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J. Immunol.181, 8761–8766 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhou, Y. et al. T cell CD40LG gene expression and the production of IgG by autologous B cells in systemic lupus erythematosus. Clin. Immunol.132, 362–370 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shlomchik, M. J., Craft, J. E. & Mamula, M. J. From T to B and back again: positive feedback in systemic autoimmune disease. Nat. Rev. Immunol.1, 147–153 (2001). ArticleCASPubMed Google Scholar
Juang, Y. T. et al. Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. J. Clin. Invest.115, 996–1005 (2005). ArticleCASPubMedPubMed Central Google Scholar
Crispin, J. C., Kyttaris, V. C., Juang, Y. T. & Tsokos, G. C. How signaling and gene transcription aberrations dictate the systemic lupus erythematosus T cell phenotype. Trends Immunol.29, 110–115 (2008). ArticleCASPubMed Google Scholar
Vassilopoulos, D., Kovacs, B. & Tsokos, G. C. TCR/CD3 complex-mediated signal transduction pathway in T cells and T cell lines from patients with systemic lupus erythematosus. J. Immunol.155, 2269–2281 (1995). CASPubMed Google Scholar
Liossis, S. N., Ding, X. Z., Dennis, G. J. & Tsokos, G. C. Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor zeta chain. J. Clin. Invest.101, 1448–1457 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tsokos, G. C., Nambiar, M. P., Tenbrock, K. & Juang, Y. T. Rewiring the T-cell: signaling defects and novel prospects for the treatment of SLE. Trends Immunol.24, 259–263 (2003). ArticleCASPubMed Google Scholar
Enyedy, E. J. et al. Fcε receptor type I γ chain replaces the deficient T cell receptor ζ chain in T cells of patients with systemic lupus erythematosus. Arthritis Rheum.44, 1114–1121 (2001). ArticleCASPubMed Google Scholar
Krishnan, S. et al. Differential expression and molecular associations of Syk in systemic lupus erythematosus T cells. J. Immunol.181, 8145–8152 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nambiar, M. P. et al. Forced expression of the Fc receptor γ-chain renders human T cells hyper-responsive to TCR/CD3 stimulation. J. Immunol.170, 2871–2876 (2003). ArticleCASPubMed Google Scholar
Li, Y. et al. Phosphorylated ERM is responsible for increased T cell polarization, adhesion, and migration in patients with systemic lupus erythematosus. J. Immunol.178, 1938–1947 (2007). ArticleCASPubMed Google Scholar
Jury, E. C., Kabouridis, P. S., Flores-Borja, F., Mageed, R. A. & Isenberg, D. A. Altered lipid raft-associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J. Clin. Invest.113, 1176–1187 (2004). ArticleCASPubMedPubMed Central Google Scholar
Deng, G. M. & Tsokos, G. C. Cholera toxin B accelerates disease progression in lupus-prone mice by promoting lipid raft aggregation. J. Immunol.181, 4019–4026 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jury, E. C., Isenberg, D. A., Mauri, C. & Ehrenstein, M. R. Atorvastatin restores Lck expression and lipid raft-associated signaling in T cells from patients with systemic lupus erythematosus. J. Immunol.177, 7416–7422 (2006). ArticleCASPubMed Google Scholar
Emlen, W., Niebur, J. & Kadera, R. Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J. Immunol.152, 3685–3692 (1994). CASPubMed Google Scholar
Gergely, P. Jr et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum.46, 175–190 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gergely, P. Jr et al. Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J. Immunol.169, 1092–1101 (2002). ArticleCASPubMedPubMed Central Google Scholar
Estess, P., DeGrendele, H. C., Pascual, V. & Siegelman, M. H. Functional activation of lymphocyte CD44 in peripheral blood is a marker of autoimmune disease activity. J. Clin. Invest.102, 1173–1182 (1998). ArticleCASPubMedPubMed Central Google Scholar
Crispin, J. C. et al. Expression of CD44v3 and CD44v6 isoforms is increased on T cells from patients with systemic lupus erythematosus and correlates with disease activity. Arthritis Rheum. doi:10.1002/art.27385.
Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet.40, 204–210 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kozyrev, S. V. et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat. Genet.40, 211–216 (2008). ArticleCASPubMed Google Scholar
Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM–ITGAX. N. Engl. J. Med.358, 900–909 (2008). ArticleCASPubMed Google Scholar
Graham, R. R. et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet.40, 1059–1061 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kyttaris, V. C., Wang, Y., Juang, Y. T., Weinstein, A. & Tsokos, G. C. Increased levels of NF-ATc2 differentially regulate CD154 and IL-2 genes in T cells from patients with systemic lupus erythematosus. J. Immunol.178, 1960–1966 (2007). ArticleCASPubMed Google Scholar
Desai-Mehta, A., Lu, L., Ramsey-Goldman, R. & Datta, S. K. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J. Clin. Invest.97, 2063–2073 (1996). ArticleCASPubMedPubMed Central Google Scholar
Tenbrock, K. & Tsokos, G. C. Transcriptional regulation of interleukin 2 in SLE T cells. Int. Rev. Immunol.23, 333–345 (2004). ArticleCASPubMed Google Scholar
Tenbrock, K., Juang, Y. T., Gourley, M. F., Nambiar, M. P. & Tsokos, G. C. Antisense cyclic adenosine 5′-monophosphate response element modulator up-regulates IL-2 in T cells from patients with systemic lupus erythematosus. J. Immunol.169, 4147–4152 (2002). ArticleCASPubMed Google Scholar
Katsiari, C. G., Kyttaris, V. C., Juang, Y. T. & Tsokos, G. C. Protein phosphatase 2A is a negative regulator of IL-2 production in patients with systemic lupus erythematosus. J. Clin. Invest.115, 3193–3204 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kyttaris, V. C., Juang, Y. T., Tenbrock, K., Weinstein, A. & Tsokos, G. C. Cyclic adenosine 5′-monophosphate response element modulator is responsible for the decreased expression of c-Fos and activator protein-1 binding in T cells from patients with systemic lupus erythematosus. J. Immunol.173, 3557–3563 (2004). ArticleCASPubMed Google Scholar
Ballestar, E., Esteller, M. & Richardson, B. C. The epigenetic face of systemic lupus erythematosus. J. Immunol.176, 7143–7147 (2006). ArticleCASPubMed Google Scholar
Sunahori, K., Juang, Y. T. & Tsokos, G. C. Methylation status of CpG islands flanking a CAMP response element motif on the protein phosphatase 2Acα promoter determines CREB binding and activity. J. Immunol.182, 1500–1508 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lu, Q., Wu, A. & Richardson, B. C. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J. Immunol.174, 6212–6219 (2005). ArticleCASPubMed Google Scholar
Lu, Q. et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol.179, 6352–6358 (2007). ArticleCASPubMed Google Scholar
Cedeno, S. et al. Defective activity of ERK-1 and ERK-2 mitogen-activated protein kinases in peripheral blood T lymphocytes from patients with systemic lupus erythematosus: potential role of altered coupling of Ras guanine nucleotide exchange factor HSos to adapter protein Grb2 in lupus T cells. Clin. Immunol.106, 41–49 (2003). ArticleCASPubMed Google Scholar
Mor, A., Philips, M. R. & Pillinger, M. H. The role of Ras signaling in lupus T lymphocytes: biology and pathogenesis. Clin. Immunol.125, 215–223 (2007). ArticleCASPubMed Google Scholar
Deng, C. et al. Decreased Ras–mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum.44, 397–407 (2001). ArticleCASPubMed Google Scholar
Gorelik, G., Fang, J. Y., Wu, A., Sawalha, A. H. & Richardson, B. Impaired T cell protein kinase Cδ activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. J. Immunol.179, 5553–5563 (2007). ArticleCASPubMed Google Scholar
Sawalha, A. H. et al. Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients. Genes Immun.9, 368–378 (2008). ArticleCASPubMedPubMed Central Google Scholar
Garaud, S. et al. IL-6 modulates CD5 expression in B cells from patients with lupus by regulating DNA methylation. J. Immunol.182, 5623–5632 (2009). ArticleCASPubMed Google Scholar
Crispin, J. C. & Tsokos, G. C. Human TCR-αβ+ CD4− CD8− T cells can derive from CD8+ T cells and display an inflammatory effector phenotype. J. Immunol.183, 4675–4681 (2009). ArticleCASPubMedPubMed Central Google Scholar
Blanco, P. et al. Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum.52, 201–211 (2005). ArticleCASPubMed Google Scholar
Viallard, J. F. et al. HLA-DR expression on lymphocyte subsets as a marker of disease activity in patients with systemic lupus erythematosus. Clin. Exp. Immunol.125, 485–491 (2001). ArticleCASPubMedPubMed Central Google Scholar
Couzi, L. et al. Predominance of CD8+ T lymphocytes among periglomerular infiltrating cells and link to the prognosis of class III and class IV lupus nephritis. Arthritis Rheum.56, 2362–2370 (2007). ArticleCASPubMed Google Scholar
Stohl, W. Impaired polyclonal T cell cytolytic activity. A possible risk factor for systemic lupus erythematosus. Arthritis Rheum.38, 506–516 (1995). ArticleCASPubMed Google Scholar
Dean, G. S., Anand, A., Blofeld, A., Isenberg, D. A. & Lydyard, P. M. Characterization of CD3+ CD4− CD8− (double negative) T cells in patients with systemic lupus erythematosus: production of IL-4. Lupus11, 501–507 (2002). ArticleCASPubMed Google Scholar
Mehal, W. Z. & Crispe, I. N. TCR ligation on CD8+ T cells creates double-negative cells in vivo. J. Immunol.161, 1686–1693 (1998). CASPubMed Google Scholar
Anand, A., Dean, G. S., Quereshi, K., Isenberg, D. A. & Lydyard, P. M. Characterization of CD3+ CD4− CD8− (double negative) T cells in patients with systemic lupus erythematosus: activation markers. Lupus11, 493–500 (2002). ArticleCASPubMed Google Scholar
Shivakumar, S., Tsokos, G. C. & Datta, S. K. T cell receptor α/β expressing double-negative (CD4−/CD8−) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. J. Immunol.143, 103–112 (1989). CASPubMed Google Scholar
Sieling, P. A. et al. Human double-negative T cells in systemic lupus erythematosus provide help for IgG and are restricted by CD1c. J. Immunol.165, 5338–5344 (2000). ArticleCASPubMed Google Scholar
Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and TH17 cells. Annu. Rev. Immunol.27, 485–517 (2009). ArticleCASPubMed Google Scholar
Yang, J. et al. TH17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum.60, 1472–1483 (2009). ArticlePubMed Google Scholar
Kang, H. K., Liu, M. & Datta, S. K. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory TH17 cells. J. Immunol.178, 7849–7858 (2007). ArticleCASPubMed Google Scholar
Doreau, A. et al. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat. Immunol.10, 778–785 (2009). ArticleCASPubMed Google Scholar
Steinmetz, O. M. et al. CXCR3 mediates renal TH1 and TH17 immune response in murine lupus nephritis. J. Immunol.183, 4693–4704 (2009). ArticleCASPubMed Google Scholar
Wang, Y. et al. Laser microdissection-based analysis of cytokine balance in the kidneys of patients with lupus nephritis. Clin. Exp. Immunol.159, 1–10 (2009). ArticleCASPubMed Google Scholar
Hsu, H. C. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol.9, 166–175 (2008). ArticleCASPubMed Google Scholar
Awasthi, A. & Kuchroo, V. K. Immunology. The yin and yang of follicular helper T cells. Science325, 953–955 (2009). CASPubMed Google Scholar
Simpson, N. et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum.62, 234–244 (2010). ArticleCASPubMed Google Scholar
Bubier, J. A. et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc. Natl Acad. Sci. USA106, 1518–1523 (2009). ArticlePubMed Google Scholar
Odegard, J. M. et al. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J. Exp. Med.205, 2873–2886 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wong, C. K. et al. Elevated production of B cell chemokine CXCL13 is correlated with systemic lupus erythematosus disease activity. J. Clin. Immunol.30, 45–52 (2010). ArticleCASPubMed Google Scholar
Feuerer, M., Hill, J. A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat. Immunol.10, 689–695 (2009). ArticleCASPubMed Google Scholar
Crispin, J. C., Martinez, A. & Alcocer-Varela, J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmun.21, 273–276 (2003). ArticlePubMed Google Scholar
Miyara, M. et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J. Immunol.175, 8392–8400 (2005). ArticleCASPubMed Google Scholar
Lee, J. H. et al. Inverse correlation between CD4+ regulatory T-cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus. Immunology117, 280–286 (2006). ArticleCASPubMedPubMed Central Google Scholar
Valencia, X., Yarboro, C., Illei, G. & Lipsky, P. E. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J. Immunol.178, 2579–2588 (2007). ArticleCASPubMed Google Scholar
Bonelli, M. et al. Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int. Immunol.20, 861–868 (2008). ArticleCASPubMed Google Scholar
Vargas-Rojas, M. I., Crispin, J. C., Richaud-Patin, Y. & Alcocer-Varela, J. Quantitative and qualitative normal regulatory T cells are not capable of inducing suppression in SLE patients due to T-cell resistance. Lupus17, 289–294 (2008). ArticleCASPubMed Google Scholar
Alcocer-Varela, J. & Alarcon-Segovia, D. Decreased production of and response to interleukin-2 by cultured lymphocytes from patients with systemic lupus erythematosus. J. Clin. Invest.69, 1388–1392 (1982). ArticleCASPubMedPubMed Central Google Scholar
Yu, A., Zhu, L., Altman, N. H. & Malek, T. R. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity30, 204–217 (2009). ArticleCASPubMedPubMed Central Google Scholar
Linker-Israeli, M. et al. Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J. Immunol.147, 117–123 (1991). CASPubMed Google Scholar
Wan, S., Xia, C. & Morel, L. IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions. J. Immunol.178, 271–279 (2007). ArticleCASPubMed Google Scholar
Iikuni, N., Lourenco, E. V., Hahn, B. H. & La Cava, A. Cutting Edge: Regulatory T cells directly suppress B cells in systemic lupus erythematosus. J. Immunol.183, 1518–1522 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dai, Z. et al. Normally occurring NKG2D+CD4+ T cells are immunosuppressive and inversely correlated with disease activity in juvenile-onset lupus. J. Exp. Med.206, 793–805 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L., Bertucci, A. M., Ramsey-Goldman, R., Burt, R. K. & Datta, S. K. Regulatory T cell (Treg) subsets return in patients with refractory lupus following stem cell transplantation, and TGF-β-producing CD8+ Treg cells are associated with immunological remission of lupus. J. Immunol.183, 6346–6358 (2009). ArticleCASPubMedPubMed Central Google Scholar
Finck, B. K., Linsley, P. S. & Wofsy, D. Treatment of murine lupus with CTLA4Ig. Science265, 1225–1227 (1994). ArticleCASPubMed Google Scholar
Daikh, D. I. & Wofsy, D. Cutting Edge: Reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide. J. Immunol.166, 2913–2916 (2001). ArticleCASPubMed Google Scholar
Kalled, S. L., Cutler, A. H., Datta, S. K. & Thomas, D. W. Anti-CD40 ligand antibody treatment of SNF1 mice with established nephritis: preservation of kidney function. J. Immunol.160, 2158–2165 (1998). CASPubMed Google Scholar
Daikh, D. I., Finck, B. K., Linsley, P. S., Hollenbaugh, D. & Wofsy, D. Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/Gp39 costimulation pathways. J. Immunol.159, 3104–3108 (1997). CASPubMed Google Scholar
Early, G. S., Zhao, W. & Burns, C. M. Anti-CD40 ligand antibody treatment prevents the development of lupus-like nephritis in a subset of New Zealand Black × New Zealand White mice. Response correlates with the absence of an anti-antibody response. J. Immunol.157, 3159–3164 (1996). CASPubMed Google Scholar
Sidiropoulos, P. I. & Boumpas, D. T. Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients. Lupus13, 391–397 (2004). ArticleCASPubMed Google Scholar
Boumpas, D. T. et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum.48, 719–727 (2003). ArticleCASPubMed Google Scholar
Kalunian, K. C., Davis, J. C. Jr, Merrill, J. T., Totoritis, M. C. & Wofsy, D. Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum.46, 3251–3258 (2002). ArticleCASPubMed Google Scholar
Iwai, H. et al. Involvement of inducible costimulator-B7 homologous protein costimulatory pathway in murine lupus nephritis. J. Immunol.171, 2848–2854 (2003). ArticleCASPubMed Google Scholar
Iwai, H. et al. Amelioration of collagen-induced arthritis by blockade of inducible costimulator-B7 homologous protein costimulation. J. Immunol.169, 4332–4339 (2002). ArticleCASPubMed Google Scholar
Hu, Y. L., Metz, D. P., Chung, J., Siu, G. & Zhang, M. B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells. J. Immunol.182, 1421–1428 (2009). ArticleCASPubMed Google Scholar
Usmani, N. & Goodfield, M. Efalizumab in the treatment of discoid lupus erythematosus. Arch. Dermatol.143, 873–877 (2007). ArticleCASPubMed Google Scholar
Naka, T., Nishimoto, N. & Kishimoto, T. The paradigm of IL-6: from basic science to medicine. Arthritis Res.4 (Suppl. 3), S233–S242 (2002). ArticlePubMedPubMed Central Google Scholar
Mihara, M., Takagi, N., Takeda, Y. & Ohsugi, Y. IL-6 receptor blockage inhibits the onset of autoimmune kidney disease in NZB/W F1 mice. Clin. Exp. Immunol.112, 397–402 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tsai, C. Y., Wu, T. H., Yu, C. L., Lu, J. Y. & Tsai, Y. Y. Increased excretions of β2-microglobulin, IL-6, and IL-8 and decreased excretion of Tamm–Horsfall glycoprotein in urine of patients with active lupus nephritis. Nephron85, 207–214 (2000). ArticleCASPubMed Google Scholar
Fukatsu, A. et al. Distribution of interleukin-6 in normal and diseased human kidney. Lab. Invest.65, 61–66 (1991). CASPubMed Google Scholar
Illei, G. G. et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum.62, 542–552 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kyttaris, V. C., Zhang, Z., Kuchroo, V. K., Oukka, M. & Tsokos, G. C. Cutting Edge: IL-23 receptor deficiency prevents the development of lupus nephritis in C57BL/6-lpr/lpr mice. J. Immunol. doi:10.4049/jimmunol.0903595.
Wu, H. Y., Quintana, F. J. & Weiner, H. L. Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+. J. Immunol.181, 6038–6050 (2008). ArticleCASPubMedPubMed Central Google Scholar
Weinblatt, M. E. et al. Treatment of rheumatoid arthritis with a Syk kinase inhibitor: a twelve-week, randomized, placebo-controlled trial. Arthritis Rheum.58, 3309–3318 (2008). ArticleCASPubMed Google Scholar
Bahjat, F. R. et al. An orally bioavailable spleen tyrosine kinase inhibitor delays disease progression and prolongs survival in murine lupus. Arthritis Rheum.58, 1433–1444 (2008). ArticleCASPubMed Google Scholar
Deng, G. M., Liu, L., Bahjat, R., Pine, P. R. & Tsokos, G. C. Inhibition of spleen tyrosine kinase suppresses skin and kidney disease in lupus prone mice. Arthritis Rheum. doi:10.1002/art.27452.
Cardenas, M. E., Zhu, D. & Heitman, J. Molecular mechanisms of immunosuppression by cyclosporine, FK506, and rapamycin. Curr. Opin. Nephrol. Hypertens.4, 472–477 (1995). ArticleCASPubMed Google Scholar
Fernandez, D. R. et al. Activation of mammalian target of rapamycin controls the loss of TCRζ in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation. J. Immunol.182, 2063–2073 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lui, S. L. et al. Rapamycin attenuates the severity of established nephritis in lupus-prone NZB/W F1 mice. Nephrol. Dial. Transplant.23, 2768–2776 (2008). ArticleCASPubMed Google Scholar
Fernandez, D., Bonilla, E., Mirza, N., Niland, B. & Perl, A. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum.54, 2983–2988 (2006). ArticleCASPubMedPubMed Central Google Scholar