Cutaneous papillomavirus E6 oncoproteins associate with MAML1 to repress transactivation and NOTCH signaling (original) (raw)
zur Hausen H . Papillomaviruses in the causation of human cancers - a brief historical account. Virology 2009; 384: 260–265. ArticleCASPubMed Google Scholar
Orth G . Genetics of epidermodysplasia verruciformis: insights into host defense against papillomaviruses. Semin Immunol 2006; 18: 362–374. ArticleCASPubMed Google Scholar
Green H . Terminal differentiation of cultured human epidermal cells. Cell 1977; 11: 405–416. ArticleCASPubMed Google Scholar
Adams JC, Watt FM . Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature 1989; 340: 307–309. ArticleCASPubMed Google Scholar
Watt FM, Estrach S, Ambler CA . Epidermal notch signalling: differentiation, cancer and adhesion. Curr Opin Cell Biol 2008; 20: 171–179. ArticleCASPubMedPubMed Central Google Scholar
Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20: 3427–3436. ArticleCASPubMedPubMed Central Google Scholar
Blanpain C, Lowry WE, Pasolli HA, Fuchs E . Canonical Notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 2006; 20: 3022–3035. ArticleCASPubMedPubMed Central Google Scholar
Moriyama M, Durham AD, Moriyama H, Hasegawa K, Nishikawa S, Radtke F et al. Multiple roles of Notch signaling in the regulation of epidermal development. Dev Cell 2008; 14: 594–604. ArticleCASPubMed Google Scholar
Tanigaki K, Honjo T . Two opposing roles of RBP-J in Notch signaling. Curr Top Dev Biol 2010; 92: 231–252. ArticleCASPubMed Google Scholar
Artavanis-Tsakonas S, Muskavitch MA . Notch: the past, the present, and the future. Curr Top Dev Biol 2010; 92: 1–29. ArticleCASPubMed Google Scholar
Saint Just Ribeiro M, Wallberg AE . Transcriptional mechanisms by the coregulator MAML1. Curr Protein Pept Sci 2009; 10: 570–576. ArticleCASPubMed Google Scholar
Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD . MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 2000; 26: 484–489. ArticleCASPubMed Google Scholar
Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA . Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 2002; 16: 1397–1411. ArticleCASPubMedPubMed Central Google Scholar
Saint Just Ribeiro M, Hansson ML, Wallberg AE . A proline repeat domain in the Notch co-activator MAML1 is important for the p300-mediated acetylation of MAML1. Biochem J 2007; 404: 289–298. ArticleCASPubMedPubMed Central Google Scholar
Stubenrauch F, Laimins LA . Human papillomavirus life cycle: active and latent phases. Semin Cancer Biol 1999; 9: 379–386. ArticleCASPubMed Google Scholar
Chen JJ, Hong Y, Rustamzadeh E, Baleja JD, Androphy EJ . Identification of an alpha helical motif sufficient for association with papillomavirus E6. J Biol Chem 1998; 273: 13537–13544. ArticleCASPubMed Google Scholar
Elston RC, Napthine S, Doorbar J . The identification of a conserved binding motif within human papillomavirus type 16 E6 binding peptides, E6AP and E6BP. J Gen Virol 1998; 79 (Pt 2): 371–374. ArticleCASPubMed Google Scholar
Vande Pol SB, Brown MC, Turner CE . Association of bovine papillomavirus type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif. Oncogene 1998; 16: 43–52. ArticleCASPubMed Google Scholar
Tong X, Boll W, Kirchhausen T, Howley PM . Interaction of the bovine papillomavirus E6 protein with the clathrin adaptor complex AP-1. J Virol 1998; 72: 476–482. CASPubMedPubMed Central Google Scholar
Tong X, Howley PM . The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc Natl Acad Sci USA 1997; 94: 4412–4417. ArticleCASPubMedPubMed Central Google Scholar
Bohl J, Das K, Dasgupta B, Vande Pol SB . Competitive binding to a charged leucine motif represses transformation by a papillomavirus E6 oncoprotein. Virology 2000; 271: 163–170. ArticleCASPubMed Google Scholar
Ronco LV, Karpova AY, Vidal M, Howley PM . Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 1998; 12: 2061–2072. ArticleCASPubMedPubMed Central Google Scholar
Huibregtse JM, Scheffner M, Howley PM . Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol 1993; 13: 4918–4927. ArticleCASPubMedPubMed Central Google Scholar
Huibregtse JM, Scheffner M, Howley PM . A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 1991; 10: 4129–4135. ArticleCASPubMedPubMed Central Google Scholar
Huibregtse JM, Scheffner M, Howley PM . Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol 1993; 13: 775–784. ArticleCASPubMedPubMed Central Google Scholar
Scheffner M, Huibregtse JM, Howley PM . Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. Proc Natl Acad Sci USA 1994; 91: 8797–8801. ArticleCASPubMedPubMed Central Google Scholar
Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993; 75: 495–505. ArticleCASPubMed Google Scholar
Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129–1136. ArticleCASPubMed Google Scholar
Das K, Bohl J, Vande Pol SB . Identification of a second transforming region in bovine papillomavirus type 1 E6 and the role of E6 interaction with paxilin, E6BP, and E6AP. J Virol 2000; 74: 812–816. ArticleCASPubMedPubMed Central Google Scholar
Cooper B, Brimer N, Stoler M, Vande Pol SB . Suprabasal overexpression of beta-1 integrin is induced by bovine papillomavirus type 1. Virology 2006; 355: 102–114. ArticleCASPubMed Google Scholar
Kaiser HW, Ness W, Offers M, O’Keefe EJ, Kreysel HW . Talin: adherens junction protein is localized at the epidermal-dermal interface in skin. J Invest Dermatol 1993; 101: 789–793. ArticleCASPubMed Google Scholar
Yedvobnick B, Smoller D, Young P, Mills D . Molecular analysis of the neurogenic locus mastermind of Drosophila melanogaster. Genetics 1988; 118: 483–497. CASPubMedPubMed Central Google Scholar
Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 2003; 33: 416–421. ArticleCASPubMed Google Scholar
Pan Y, Lin MH, Tian X, Cheng HT, Gridley T, Shen J et al. Gamma-secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev Cell 2004; 7: 731–743. ArticleCASPubMed Google Scholar
Yamamoto N, Tanigaki K, Han H, Hiai H, Honjo T . Notch/RBP-J signaling regulates epidermis/hair fate determination of hair follicular stem cells. Curr Biol 2003; 13: 333–338. ArticleCASPubMed Google Scholar
Proweller A, Tu L, Lepore JJ, Cheng L, Lu MM, Seykora J et al. Impaired Notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res 2006; 66: 7438–7444. ArticleCASPubMed Google Scholar
Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105. ArticleCASPubMedPubMed Central Google Scholar
Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661. ArticleCASPubMed Google Scholar
Lee SY, Kumano K, Nakazaki K, Sanada M, Matsumoto A, Yamamoto G et al. Gain-of-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci 2009; 100: 920–926. ArticleCASPubMed Google Scholar
Klinakis A, Lobry C, Abdel-Wahab O, Oh P, Haeno H, Buonamici S et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 2011; 473: 230–233. ArticleCASPubMedPubMed Central Google Scholar
Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011; 333: 1154–1157. ArticleCASPubMedPubMed Central Google Scholar
Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011; 333: 1157–1160. ArticleCASPubMedPubMed Central Google Scholar
Baldus CD, Thibaut J, Goekbuget N, Stroux A, Schlee C, Mossner M et al. Prognostic implications of NOTCH1 and FBXW7 mutations in adult acute T-lymphoblastic leukemia. Haematologica 2009; 94: 1383–1390. ArticleCASPubMedPubMed Central Google Scholar
Daniel B, Rangarajan A, Mukherjee G, Vallikad E, Krishna S . The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions. J Gen Virol 1997; 78 (Pt 5): 1095–1101. ArticleCASPubMed Google Scholar
Zagouras P, Stifani S, Blaumueller CM, Carcangiu ML, Artavanis-Tsakonas S . Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci USA 1995; 92: 6414–6418. ArticleCASPubMedPubMed Central Google Scholar
Ramdass B, Maliekal TT, Lakshmi S, Rehman M, Rema P, Nair P et al. Coexpression of Notch1 and NF-kappaB signaling pathway components in human cervical cancer progression. Gynecol Oncol 2007; 104: 352–361. ArticleCASPubMed Google Scholar
Rangarajan A, Syal R, Selvarajah S, Chakrabarti O, Sarin A, Krishna S . Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt. Virology 2001; 286: 23–30. ArticleCASPubMed Google Scholar
Pang RT, Leung CO, Ye TM, Liu W, Chiu PC, Lam KK et al. MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis 2010; 31: 1037–1044. ArticleCASPubMed Google Scholar
Rasul S, Balasubramanian R, Filipovic A, Slade MJ, Yague E, Coombes RC . Inhibition of gamma-secretase induces G2/M arrest and triggers apoptosis in breast cancer cells. Br J Cancer 2009; 100: 1879–1888. ArticleCASPubMedPubMed Central Google Scholar
Sun XM, Wen HW, Chen CL, Liao QP . [Expression of Notch intracellular domain in cervical cancer and effect of DAPT on cervical cancer cell]. Zhonghua Fu Chan Ke Za Zhi 2009; 44: 369–373. CASPubMed Google Scholar
Yu H, Huang SL, Zhao XP, Lu J, Qian GX, Ge SF . [Effect of CRE-dependent RNA interference targeting Notch1 on proliferation of cervical cancer cell line HeLa]. Ai Zheng 2007; 26: 148–153. CASPubMed Google Scholar
Song LL, Peng Y, Yun J, Rizzo P, Chaturvedi V, Weijzen S et al. Notch-1 associates with IKKalpha and regulates IKK activity in cervical cancer cells. Oncogene 2008; 27: 5833–5844. ArticleCASPubMed Google Scholar
Talora C, Cialfi S, Segatto O, Morrone S, Kim Choi J, Frati L et al. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways. Exp Cell Res 2005; 305: 343–354. ArticleCASPubMed Google Scholar
Talora C, Sgroi DC, Crum CP, Dotto GP . Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev 2002; 16: 2252–2263. ArticleCASPubMedPubMed Central Google Scholar
Wang L, Qin H, Chen B, Xin X, Li J, Han H . Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells. Int J Gynecol Cancer 2007; 17: 1283–1292. ArticleCASPubMed Google Scholar
Yao J, Duan L, Fan M, Yuan J, Wu X . Notch1 induces cell cycle arrest and apoptosis in human cervical cancer cells: involvement of nuclear factor kappa B inhibition. Int J Gynecol Cancer 2007; 17: 502–510. ArticleCASPubMed Google Scholar
Lathion S, Schaper J, Beard P, Raj K . Notch1 can contribute to viral-induced transformation of primary human keratinocytes. Cancer Res 2003; 63: 8687–8694. CASPubMed Google Scholar
Kurooka H, Honjo T . Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J Biol Chem 2000; 275: 17211–17220. ArticleCASPubMed Google Scholar
Wallberg AE, Pedersen K, Lendahl U, Roeder RG . p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol Cell Biol 2002; 22: 7812–7819. ArticleCASPubMedPubMed Central Google Scholar
Oswald F, Tauber B, Dobner T, Bourteele S, Kostezka U, Adler G et al. p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol Cell Biol 2001; 21: 7761–7774. ArticleCASPubMedPubMed Central Google Scholar
Zhao Y, Katzman RB, Delmolino LM, Bhat I, Zhang Y, Gurumurthy CB et al. The Notch regulator MAML1 interacts with p53 and functions as a coactivator. J Biol Chem 2007; 282: 11969–11981. ArticleCASPubMed Google Scholar
Shen H, McElhinny AS, Cao Y, Gao P, Liu J, Bronson R et al. The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev 2006; 20: 675–688. ArticleCASPubMedPubMed Central Google Scholar
Alves-Guerra MC, Ronchini C, Capobianco AJ . Mastermind-like 1 is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res 2007; 67: 8690–8698. ArticleCASPubMed Google Scholar
Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev 2007; 21: 562–577. ArticleCASPubMedPubMed Central Google Scholar
Melar-New M, Laimins LA . Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol 2010; 84: 5212–5221. ArticleCASPubMedPubMed Central Google Scholar
Allen-Hoffmann BL, Schlosser SJ, Ivarie CA, Sattler CA, Meisner LF, O’Connor SL . Normal growth and differentiation in a spontaneously immortalized near- diploid human keratinocyte cell line, NIKS. J Invest Dermatol 2000; 114: 444–455. ArticleCASPubMed Google Scholar
Hsieh JJ, Henkel T, Salmon P, Robey E, Peterson MG, Hayward SD . Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol Cell Biol 1996; 16: 952–959. ArticleCASPubMedPubMed Central Google Scholar
Kutner RH, Zhang XY, Reiser J . Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 2009; 4: 495–505. ArticleCASPubMed Google Scholar
Jin YH, Kim H, Oh M, Ki H, Kim K . Regulation of Notch1/NICD and Hes1 expressions by GSK-3alpha/beta. Mol Cells 2009; 27: 15–19. ArticleCASPubMed Google Scholar
Ohashi S, Natsuizaka M, Yashiro-Ohtani Y, Kalman RA, Nakagawa M, Wu L et al. NOTCH1 and NOTCH3 coordinate esophageal squamous differentiation through a CSL-dependent transcriptional network. Gastroenterology 2010; 139: 2113–2123. ArticleCASPubMed Google Scholar
Peng S, Hua J, Cao X, Wang H . Gelatin induces trophectoderm differentiation of mouse embryonic stem cells. Cell Biol Int 2010; 35: 587–591. Article Google Scholar
Gyuris J, Golemis E, Chertkov H, Brent R . Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 1993; 75: 791–803. ArticleCASPubMed Google Scholar