Shachar, S. & Misteli, T. Causes and consequences of nuclear gene positioning. J. Cell Sci.130, 1501–1508 (2017). CASPubMedPubMed Central Google Scholar
Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell148, 458–472 (2012). CASPubMed Google Scholar
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature485, 376–380 (2012). CASPubMedPubMed Central Google Scholar
Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell48, 471–484 (2012). CASPubMedPubMed Central Google Scholar
Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature485, 381–385 (2012). CASPubMedPubMed Central Google Scholar
Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA108, 4334–4339 (2011). CASPubMedPubMed Central Google Scholar
Sirri, V., Urcuqui-Inchima, S., Roussel, P. & Hernandez-Verdun, D. Nucleolus: the fascinating nuclear body. Histochem. Cell Biol.129, 13–31 (2008). CASPubMed Google Scholar
Nemeth, A. & Grummt, I. Dynamic regulation of nucleolar architecture. Curr. Opin. Cell Biol.52, 105–111 (2018). CASPubMed Google Scholar
Falahati, H., Pelham-Webb, B., Blythe, S. & Wieschaus, E. Nucleation by rRNA dictates the precision of nucleolus assembly. Curr. Biol.26, 277–285 (2016). CASPubMedPubMed Central Google Scholar
Heyn, P., Salmonowicz, H., Rodenfels, J. & Neugebauer, K. M. Activation of transcription enforces the formation of distinct nuclear bodies in zebrafish embryos. RNA Biol.14, 752–760 (2017). PubMed Google Scholar
Verheggen, C., Almouzni, G. & Hernandez-Verdun, D. The ribosomal RNA processing machinery is recruited to the nucleolar domain before RNA polymerase I during Xenopus laevis development. J. Cell Biol.149, 293–306 (2000). CASPubMedPubMed Central Google Scholar
Mais, C., Wright, J. E., Prieto, J. L., Raggett, S. L. & McStay, B. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev.19, 50–64 (2005). CASPubMedPubMed Central Google Scholar
Hamdane, N. et al. Disruption of the UBF gene induces aberrant somatic nucleolar bodies and disrupts embryo nucleolar precursor bodies. Gene612, 5–11 (2017). CASPubMed Google Scholar
Caudron-Herger, M. et al. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J.34, 2758–2774 (2015). CASPubMedPubMed Central Google Scholar
Heitz, E. Das heterochromatin der moose [German]. Jahrb. Wiss. Bot.69, 762–818 (1928). Google Scholar
Filion, G. J. et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell143, 212–224 (2010). CASPubMedPubMed Central Google Scholar
Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature489, 57–74 (2012). Google Scholar
Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature453, 948–951 (2008). CASPubMed Google Scholar
van Bemmel, J. G. et al. The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome. PLOS ONE5, e15013 (2010). PubMedPubMed Central Google Scholar
Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell38, 603–613 (2010). CASPubMedPubMed Central Google Scholar
van Koningsbruggen, S. et al. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell21, 3735–3748 (2010). PubMedPubMed Central Google Scholar
Dillinger, S., Straub, T. & Nemeth, A. Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation. PLOS ONE12, e0178821 (2017). PubMedPubMed Central Google Scholar
Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell153, 178–192 (2013). CASPubMed Google Scholar
Ragoczy, T., Telling, A., Scalzo, D., Kooperberg, C. & Groudine, M. Functional redundancy in the nuclear compartmentalization of the late-replicating genome. Nucleus5, 626–635 (2014). PubMedPubMed Central Google Scholar
Kalverda, B., Pickersgill, H., Shloma, V. V. & Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell140, 360–371 (2010). CASPubMed Google Scholar
Solovei, I. et al. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell137, 356–368 (2009). CASPubMed Google Scholar
Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet.38, 1348–1354 (2006). CASPubMed Google Scholar
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326, 289–293 (2009). CASPubMedPubMed Central Google Scholar
Vieux-Rochas, M., Fabre, P. J., Leleu, M., Duboule, D. & Noordermeer, D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc. Natl Acad. Sci. USA112, 4672–4677 (2015). CASPubMedPubMed Central Google Scholar
van Steensel, B. & Belmont, A. S. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell169, 780–791 (2017). PubMedPubMed Central Google Scholar
Pinheiro, I. & Heard, E. X chromosome inactivation: new players in the initiation of gene silencing. F1000Res6, 344 (2017). Google Scholar
McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature521, 232–236 (2015). CASPubMedPubMed Central Google Scholar
Probst, A. V. et al. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev. Cell19, 625–638 (2010). CASPubMed Google Scholar
Velazquez Camacho, O. et al. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA: DNA hybrid formation. eLife6, e25293 (2017). PubMedPubMed Central Google Scholar
Martienssen, R. & Moazed, D. RNAi and heterochromatin assembly. Cold Spring Harb. Perspect. Biol.7, a019323 (2015). PubMedPubMed Central Google Scholar
Yuan, K. & O’Farrell, P. H. TALE-light imaging reveals maternally guided, H3K9me2/3-independent emergence of functional heterochromatin in Drosophila embryos. Genes Dev.30, 579–593 (2016). CASPubMedPubMed Central Google Scholar
Brackley, C. A., Johnson, J., Kelly, S., Cook, P. R. & Marenduzzo, D. Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains. Nucleic Acids Res.44, 3503–3512 (2016). CASPubMedPubMed Central Google Scholar
Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerizas, J. M. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell169, 216–228 (2017). CASPubMed Google Scholar
Battulin, N. et al. Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach. Genome Biol.16, 77 (2015). PubMedPubMed Central Google Scholar
Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature547, 232–235 (2017). CASPubMed Google Scholar
Jung, Y. H. et al. Chromatin states in mouse sperm correlate with embryonic and adult regulatory landscapes. Cell Rep.18, 1366–1382 (2017). CASPubMedPubMed Central Google Scholar
Carone, B. R. et al. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev. Cell30, 11–22 (2014). CASPubMedPubMed Central Google Scholar
Palstra, R. J. et al. Maintenance of long-range DNA interactions after inhibition of ongoing RNA polymerase II transcription. PLOS ONE3, e1661 (2008). PubMedPubMed Central Google Scholar
Lund, E. et al. Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Res.23, 1580–1589 (2013). CASPubMedPubMed Central Google Scholar
Kohwi, M., Lupton, J. R., Lai, S. L., Miller, M. R. & Doe, C. Q. Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell152, 97–108 (2013). CASPubMedPubMed Central Google Scholar
Tumbar, T. & Belmont, A. S. Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat. Cell Biol.3, 134–139 (2001). CASPubMed Google Scholar
Chuang, C. H. et al. Long-range directional movement of an interphase chromosome site. Curr. Biol.16, 825–831 (2006). CASPubMed Google Scholar
Bensaude, O. Inhibiting eukaryotic transcription: which compound to choose? How to evaluate its activity? Transcription2, 103–108 (2011). PubMedPubMed Central Google Scholar
Therizols, P. et al. Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science346, 1238–1242 (2014). CASPubMedPubMed Central Google Scholar
Isoda, T. et al. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate. Cell171, 103–119 (2017). CASPubMedPubMed Central Google Scholar
Hu, Y., Plutz, M. & Belmont, A. S. Hsp70 gene association with nuclear speckles is Hsp70 promoter specific. J. Cell Biol.191, 711–719 (2010). CASPubMedPubMed Central Google Scholar
Khanna, N., Hu, Y. & Belmont, A. S. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol.24, 1138–1144 (2014). CASPubMedPubMed Central Google Scholar
Chen, Y. et al. TSA-Seq mapping of nuclear genome organization. J. Cell Biol. (in the press).
Brickner, J. Genetic and epigenetic control of the spatial organization of the genome. Mol. Biol. Cell28, 364–369 (2017). CASPubMedPubMed Central Google Scholar
Osborne, C. S. et al. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLOS Biol.5, e192 (2007). PubMedPubMed Central Google Scholar
Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet.42, 53–61 (2010). CASPubMed Google Scholar
Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell174, 744–757 (2018). CASPubMedPubMed Central Google Scholar
Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature543, 519–524 (2017). CASPubMedPubMed Central Google Scholar
Denholtz, M. et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell13, 602–616 (2013). CASPubMed Google Scholar
de Wit, E. et al. The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature501, 227–231 (2013). PubMed Google Scholar
Ghavi-Helm, Y. et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature512, 96–100 (2014). CASPubMed Google Scholar
Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science353, 598–602 (2016). CASPubMedPubMed Central Google Scholar
Szabo, Q. et al. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci. Adv.4, eaar8082 (2018). PubMedPubMed Central Google Scholar
Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell161, 1012–1025 (2015). CASPubMedPubMed Central Google Scholar
Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature529, 110–114 (2016). CASPubMed Google Scholar
Symmons, O. et al. The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev. Cell39, 529–543 (2016). CASPubMedPubMed Central Google Scholar
Narendra, V. et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science347, 1017–1021 (2015). CASPubMedPubMed Central Google Scholar
Sexton, T. & Cavalli, G. The role of chromosome domains in shaping the functional genome. Cell160, 1049–1059 (2015). CASPubMed Google Scholar
Dekker, J., Guttman, M. & Lomvardas, S. A guide to packing your DNA. Cell165, 259–261 (2016). PubMed Google Scholar
Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin domains: the unit of chromosome organization. Mol. Cell62, 668–680 (2016). CASPubMedPubMed Central Google Scholar
Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet.19, 789–800 (2018). CASPubMed Google Scholar
van Ruiten, M. S. & Rowland, B. D. SMC complexes: universal DNA looping machines with distinct regulators. Trends Genet.34, 477–487 (2018). PubMed Google Scholar
Sofueva, S. et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J.32, 3119–3129 (2013). CASPubMedPubMed Central Google Scholar
Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature551, 51–56 (2017). PubMedPubMed Central Google Scholar
Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J.36, 3573–3599 (2017). CASPubMedPubMed Central Google Scholar
Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell169, 693–707 (2017). CASPubMedPubMed Central Google Scholar
Van Bortle, K. & Corces, V. G. tDNA insulators and the emerging role of TFIIIC in genome organization. Transcription3, 277–284 (2012). PubMedPubMed Central Google Scholar
Van Bortle, K. et al. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol.15, R82 (2014). PubMedPubMed Central Google Scholar
Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell153, 1281–1295 (2013). CASPubMedPubMed Central Google Scholar
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell159, 1665–1680 (2014). CASPubMedPubMed Central Google Scholar
de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell60, 676–684 (2015). PubMed Google Scholar
Hanssen, L. L. P. et al. Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nat. Cell Biol.19, 952–961 (2017). CASPubMedPubMed Central Google Scholar
Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell169, 930–944 (2017). CASPubMedPubMed Central Google Scholar
Gambetta, M. C. & Furlong, E. E. M. The insulator protein CTCF is required for correct hox gene expression, but not for embryonic development in Drosophila. Genetics210, 129–136 (2018). CASPubMedPubMed Central Google Scholar
Hsieh, T. H. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell162, 108–119 (2015). CASPubMedPubMed Central Google Scholar
Donze, D. & Kamakaka, R. T. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J.20, 520–531 (2001). CASPubMedPubMed Central Google Scholar
Yuen, K. C., Slaughter, B. D. & Gerton, J. L. Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters. Sci. Adv.3, e1700191 (2017). PubMedPubMed Central Google Scholar
Le, T. B., Imakaev, M. V., Mirny, L. A. & Laub, M. T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science342, 731–734 (2013). CASPubMedPubMed Central Google Scholar
Marbouty, M. et al. Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol. Cell59, 588–602 (2015). CASPubMed Google Scholar
Le, T. B. & Laub, M. T. Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries. EMBO J.35, 1582–1595 (2016). CASPubMedPubMed Central Google Scholar
Liu, C. et al. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res.26, 1057–1068 (2016). CASPubMedPubMed Central Google Scholar
Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature523, 240–244 (2015). CASPubMedPubMed Central Google Scholar
Ramirez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun.9, 189 (2018). PubMedPubMed Central Google Scholar
Ulianov, S. V. et al. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res.26, 70–84 (2016). PubMedPubMed Central Google Scholar
Li, L. et al. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Mol. Cell58, 216–231 (2015). CASPubMedPubMed Central Google Scholar
Giorgetti, L. et al. Structural organization of the inactive X chromosome in the mouse. Nature535, 575–579 (2016). CASPubMedPubMed Central Google Scholar
Darrow, E. M. et al. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc. Natl Acad. Sci. USA113, E4504–E4512 (2016). CASPubMedPubMed Central Google Scholar
Minajigi, A. et al. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science349, aab2276 (2015). Google Scholar
Ke, Y. et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell170, 367–381 (2017). CASPubMed Google Scholar
Kaaij, L. J. T., van der Weide, R. H., Ketting, R. F. & de Wit, E. Systemic loss and gain of chromatin architecture throughout zebrafish development. Cell Rep.24, 1–10 (2018). CASPubMedPubMed Central Google Scholar
Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell67, 837–852 (2017). CASPubMedPubMed Central Google Scholar
El-Sharnouby, S. et al. Regions of very low H3K27me3 partition the Drosophila genome into topological domains. PLOS ONE12, e0172725 (2017). PubMedPubMed Central Google Scholar
Long, H. K., Prescott, S. L. & Wysocka, J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell167, 1170–1187 (2016). CASPubMedPubMed Central Google Scholar
Spurrell, C. H., Dickel, D. E. & Visel, A. The ties that bind: mapping the dynamic enhancer-promoter interactome. Cell167, 1163–1166 (2016). CASPubMedPubMed Central Google Scholar
Andrey, G. & Mundlos, S. The three-dimensional genome: regulating gene expression during pluripotency and development. Development144, 3646–3658 (2017). CASPubMed Google Scholar
Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell149, 1233–1244 (2012). CASPubMedPubMed Central Google Scholar
Deng, W. et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell158, 849–860 (2014). CASPubMedPubMed Central Google Scholar
Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol.5, 1017–1027 (2004). CASPubMed Google Scholar
Andrey, G. et al. A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science340, 1234167 (2013). PubMed Google Scholar
Rubin, A. J. et al. Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nat. Genet.49, 1522–1528 (2017). CASPubMedPubMed Central Google Scholar
Alexander, J. M., Guan, J., Huang, B., Lomvardas, S. & Weiner, O. D. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. Preprint at bioRxiv. https://doi.org/10.1101/409672 (2018). Article Google Scholar
Chen, H. et al. Dynamic interplay between enhancer-promoter topology and gene activity. Nat. Genet.50, 1296–1303 (2018). CASPubMedPubMed Central Google Scholar
Lefevre, P., Witham, J., Lacroix, C. E., Cockerill, P. N. & Bonifer, C. The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Mol. Cell32, 129–139 (2008). CASPubMedPubMed Central Google Scholar
Lengronne, A. et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature430, 573–578 (2004). CASPubMedPubMed Central Google Scholar
Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature544, 503–507 (2017). CASPubMedPubMed Central Google Scholar
Chernukhin, I. et al. CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide. Mol. Cell. Biol.27, 1631–1648 (2007). CASPubMedPubMed Central Google Scholar
Ruiz-Velasco, M. et al. CTCF-mediated chromatin loops between promoter and gene body regulate alternative splicing across individuals. Cell Syst.5, 628–637 (2017). CASPubMed Google Scholar
Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A. Phase separation model for transcriptional control. Cell169, 13–23 (2017). CASPubMedPubMed Central Google Scholar
Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol.25, 833–840 (2018). CASPubMed Google Scholar
Jackson, D. A., Hassan, A. B., Errington, R. J. & Cook, P. R. Visualization of focal sites of transcription within human nuclei. EMBO J.12, 1059–1065 (1993). CASPubMedPubMed Central Google Scholar
van Steensel, B. et al. Localization of the glucocorticoid receptor in discrete clusters in the cell nucleus. J. Cell Sci.108, 3003–3011 (1995). PubMed Google Scholar
Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science361, 412–415 (2018). CASPubMedPubMed Central Google Scholar
Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell175, 1842–1855 (2018). CASPubMed Google Scholar
Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science361, eaar3958 (2018). PubMedPubMed Central Google Scholar
Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. & Mirny, L. A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl Acad. Sci. USA115, E6697–E6706 (2018). CASPubMedPubMed Central Google Scholar
Kueng, S., Oppikofer, M. & Gasser, S. M. SIR proteins and the assembly of silent chromatin in budding yeast. Annu. Rev. Genet.47, 275–306 (2013). CASPubMed Google Scholar
Tolhuis, B. et al. Interactions among polycomb domains are guided by chromosome architecture. PLOS Genet.7, e1001343 (2011). CASPubMedPubMed Central Google Scholar
Bantignies, F. et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell144, 214–226 (2011). CASPubMed Google Scholar
Ogiyama, Y., Schuettengruber, B., Papadopoulos, G. L., Chang, J. M. & Cavalli, G. Polycomb-dependent chromatin looping contributes to gene silencing during Drosophila development. Mol. Cell71, 73–88 (2018). CASPubMed Google Scholar
Csink, A. K. & Henikoff, S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature381, 529–531 (1996). CASPubMed Google Scholar
Seum, C., Delattre, M., Spierer, A. & Spierer, P. Ectopic HP1 promotes chromosome loops and variegated silencing in Drosophila. EMBO J.20, 812–818 (2001). CASPubMedPubMed Central Google Scholar
Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature547, 236–240 (2017). CASPubMedPubMed Central Google Scholar
Cabianca, D. S. & Gasser, S. M. Spatial segregation of heterochromatin: Uncovering functionality in a multicellular organism. Nucleus7, 301–307 (2016). CASPubMedPubMed Central Google Scholar
Boumendil, C., Hari, P., Olsen, K. C. F., Acosta, J. C. & Bickmore, W. A. Nuclear pore density controls heterochromatin reorganization during senescence. Genes Dev.33, 144–149 (2019). CASPubMedPubMed Central Google Scholar
Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol.19, 229–244 (2018). CASPubMed Google Scholar