Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach (original) (raw)
References
Murdoch WJ, McDonnel AC: Roles of the ovarian surface epithelium in ovulation and carcinogenesis. Reproduction. 2002, 123 (6): 743-750. ArticleCASPubMed Google Scholar
Godwin AK, Testa JR, Hamilton TC: The biology of ovarian cancer development. Cancer. 1993, 71 (2 Suppl): 530-536. CASPubMed Google Scholar
Ness RB, Cottreau C: Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst. 1999, 91 (17): 1459-1467. ArticleCASPubMed Google Scholar
Siegel R, Ward E, Brawley O, Jemal A: Cancer statistics, 2011. CA Cancer J Clin. 2011, 61: 212-236. ArticlePubMed Google Scholar
Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics, 2009. CA Cancer J Clin. 2009, 59: 225-249. ArticlePubMed Google Scholar
Kusumbe AP, Bapat SA: Ovarian stem cell biology and the emergence of ovarian cancer stem cells. Cancer Stem Cells. Edited by: Bapat S, Hoboken NJ. 2008, Hoboken: John Wiley & Sons Inc, 95-110. Chapter Google Scholar
Bast RC, Hennessy B, Mills GB: The biology of ovarian cancer: new opportunities for translation. Nature Reviews. Cancer. 2009, 9: 415-428. CASPubMedPubMed Central Google Scholar
Wikborn C, Pettersson F, Silfversward C, Moberg PJ: Symptoms and diagnostic difficulties in ovarian epithelial cancer. Int J Gynaecol Obstet. 1993, 42: 261-264. ArticleCASPubMed Google Scholar
Ghasemi R, Grassadonia A, Tinari N, Piccolo E, Natoli C, Tomao F, Iacobelli S: Tumor-derived microvesicles: the metastasomes. Medical Hypotheses. Med Hypotheses. 2013, 80 (1): 75-82. ArticleCASPubMed Google Scholar
Fleming GF, Ronnet BM, Seidman J: Epithelial ovarian cancer. Principles and Practice of Gynecologic Oncology. Edited by: Barakat RR, Markman M, Randal ME. 2009, Philadelphia: Lippincot Williams & Wilkins, 763-836. 5 Google Scholar
Kurman RJ, Shih Ie M: The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010, 34: 433-443. ArticlePubMedPubMed Central Google Scholar
Kauffman RP, Griffin SJ, Lund JD, Tullar PE: Recommendations for cervical cancer screening: do they render the annual pelvic examination obsolete?. Med Princ Pract. in press
Banerjee S, Kaye SB: New strategies in the treatment of ovarian cancer -current clinical perspectives and future potential. Clin Cancer Res. in press
Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 2001, 414: 105-111. ArticleCASPubMed Google Scholar
Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, Silasi DA, Steffensen KD, Waldstrom M, Visintin I, Mor G: Molecular phenotyping of human ovarian cancer stem cells unravel the mechanisms for repair and chemo-resistance. Cell Cycle. 2009, 8 (Suppl. 1): 158-166. ArticleCASPubMedPubMed Central Google Scholar
Bapat SA, Mali AM, Koppikar CB, Kurrey NK: Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005, 65: 3025-3029. CASPubMed Google Scholar
Lim D, Oliva E: Precursors and pathogenesis of ovarian carcinoma. Pathology. 2013, 45 (3): 229-42. ArticleCASPubMed Google Scholar
Auersperg N: The origin of ovarian carcinomas: a unifying hypothesis. Int J Gynecol Pathol. 2011, 30 (1): 12-21. ArticlePubMed Google Scholar
Tinelli A, Vergara D, Martignago R, Leo G, Pisanò M, Malvasi A: An outlook on ovarian cancer and borderline ovarian tumors: focus on genomic and proteomic findings. Curr Genomics. 2009, 10 (4): 240-9. ArticleCASPubMedPubMed Central Google Scholar
Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, Scurry JP, Scolyer RA, Smith AN, Bali A, Vanden Bergh P, Baron-Hay S, Scott C, Fink D, Hacker NF, Sutherland RL, O’Brien PM: A distinct molecular profile associated with mucinous epithelial ovarian cancer. Br J Cancer. 2006, 94 (6): 904-13. ArticleCASPubMedPubMed Central Google Scholar
Kurrey NK, Amit K, Bapat SA: Snail and slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol. 2005, 97: 155-165. ArticleCASPubMed Google Scholar
Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP: Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008, 68: 4311-4320. ArticleCASPubMedPubMed Central Google Scholar
Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S, Connolly DC, Zhang Y, Montone K, Bützow R, Coukos G, Zhang L: Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform1 (ALDH1), in human epithelial cancers. PLoS ONE. 2010, 5: e10277- ArticlePubMedPubMed CentralCAS Google Scholar
Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, Ginestier C, Johnston C, Kueck A, Reynolds RK, Wicha MS, Buckanovich RJ: Aldehyde dehydrogenase and CD133 define angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 2011, 71: 3991-4001. ArticleCASPubMedPubMed Central Google Scholar
Dyall S, Gayther SA, Dafou D: Cancer stem cells and epithelial ovarian cancer. 2010, Oncology: Journal of, 105269- Google Scholar
Bast RC, Mills GB: Personalizing therapy for ovarian cancer: BRCAness and beyond. J Clin Oncol. 2010, 28 (22): 3545-3548. ArticleCASPubMed Google Scholar
Pardal R, Clarke MF, Morrison SJ: Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003, 3: 895-902. ArticleCASPubMed Google Scholar
Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM: Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006, 66: 9339-9344. ArticleCASPubMed Google Scholar
Kurman RJ, Visvanathan K, Roden R, Wu TC, Shih IM: Early detection and treatment of ovarian cancer: shifting from early stage to minimal volume of disease based on a new model of carcinogenesis. Am J Obstet Gynecol. 2008, 198: 351-356. ArticlePubMedPubMed Central Google Scholar
Pisano C, Bruni GS, Facchini G, Marchetti C, Pignata S: Treatment of recurrent epithelial ovarian cancer. Ther Clin Risk Manag. 2009, 5: 421-426. CASPubMedPubMed Central Google Scholar
Pujade-Lauraine E, Wagner U, Aavall-Lundqvist E, Gebski V, Heywood M, Vasey PA, Volgger B, Vergote I, Pignata S, Ferrero A, Sehouli J, Lortholary A, Kristensen G, Jackisch C, Joly F, Brown C, Le Fur N, du Bois A: Pegylated liposomal Doxorubicin and Carboplatin compared with Paclitaxel and Carboplatin for patients with platinum-sensitive ovarian cancer in late relapse. J Clin Oncol. 2010, 28: 3323-3329. ArticleCASPubMed Google Scholar
Monk BJ, Herzog TJ, Kaye SB, Krasner CN, Vermorken JB, Muggia FM, Pujade-Lauraine E, Park YC, Parekh TV, Poveda AM: Trabectedin plus pegylated liposomal Doxorubicin in recurrent ovarian cancer. J Clin Oncol. 2010, 28: 3107-3114. ArticleCASPubMed Google Scholar
Benedetti-Panici P, Perniola G, Marchetti C, Pernice M, Donfrancesco C, Di Donato V, Tomao F, Palaia I, Graziano M, Basile S, Bellati F: Intraperitoneal chemotherapy by ultrasound-guided direct puncture in recurrent ovarian cancer: feasibility, compliance, and complications. Int J Gynecol Cancer. 2012, 22 (6): 1069-74. ArticlePubMed Google Scholar
Tomao F, Panici PB, Frati L, Tomao S: Emerging role of pemetrexed in ovarian cancer. Expert Rev Anticancer Ther. 2009, 9 (12): 1727-35. ArticlePubMed Google Scholar
Bellati F, Napoletano C, Gasparri ML, Ruscito I, Marchetti C, Pignata S, Tomao F, Benedetti Panici P, Nuti M: Current knowledge and open issues regarding bevacizumab in gynecological neoplasms. Crit Rev Oncol Hematol. 2012, 83 (1): 35-46. ArticlePubMed Google Scholar
Tomao F, Benedetti Panici P, Tomao S: Improvement in progression free survival in oceans bevacizumab arm: a critical point of view. J Clin Oncol. 2013, 31 (1): 166-7. ArticlePubMed Google Scholar
Guarneri V, Piacentini F, Barbieri E, Conte PF: Achievements and unmet needs in the management of advanced ovarian cancer. Gynecol Oncol. 2010, 117 (2): 152-158. ArticleCASPubMed Google Scholar
Itamochi H: Targeted therapies in epithelial ovarian cancer: molecular mechanisms of action. World Journal of Biological Chemistry. 2010, 1 (7): 209-220. ArticlePubMedPubMed Central Google Scholar
Croker AK, Allan AL: Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med. 2008, 12 (2): 374-390. ArticleCASPubMedPubMed Central Google Scholar
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006, 444 (7120): 756-760. ArticleCASPubMed Google Scholar
Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006, 66 (12): 6063-6071. ArticleCASPubMedPubMed Central Google Scholar
Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, Clouthier SG, Wicha MS: Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling. PLoS Biol. 2009, 7 (6): e1000121- ArticlePubMedPubMed CentralCAS Google Scholar
Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S, Sesterhenn IA, McLeod DG, Srivastava S, Rhim JS: Identification of putative stem cell markers, CD133 and CXCR4, in hTERTimmortalized primary nonmalignant and malignant tumorderived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res. 2007, 67 (7): 3153-3161. ArticleCASPubMed Google Scholar
Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS: Breast cancer cell lines contain functional cancer stem sells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009, 69 (4): 1302-1313. ArticleCASPubMedPubMed Central Google Scholar
Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003, 17 (10): 1253-1270. ArticleCASPubMedPubMed Central Google Scholar
Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW: Epigenetic stem cell signature in cancer. Nat Genet. 2007, 39 (2): 157-158. ArticleCASPubMed Google Scholar
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003, 100: 3983-3988. ArticleCASPubMedPubMed Central Google Scholar
Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2007, 64: 7011-7021. Article Google Scholar
O’Brien CA, Pollett A, Gallinger S, Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007, 445: 106-110. ArticlePubMedCAS Google Scholar
Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R: Identification and expansion of human colon-cancer-initiating cells. Nature. 2007, 445: 111-115. ArticleCASPubMed Google Scholar
Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 2007, 104: 973-978. ArticleCASPubMedPubMed Central Google Scholar
Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res. 2007, 67: 1030-1037. ArticleCASPubMed Google Scholar
Dick JE, Bhatia M, Gan O, Kapp U: Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells. 1997, 15 (Suppl. 1): 199-207. ArticlePubMed Google Scholar
Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ: Efficient tumour formation by single human melanoma cells. Nature. 2008, 456 (7222): 593-598. ArticleCASPubMedPubMed Central Google Scholar
Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997, 3: 730-737. ArticleCASPubMed Google Scholar
Dalerba P, Clarke MF: Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell. 2007, 1: 241-242. ArticleCASPubMed Google Scholar
Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007, 104: 10158-10163. ArticleCASPubMedPubMed Central Google Scholar
Hill RP: Identifying cancer stem cells in solid tumors: case not proven. Cancer Res. 2006, 66: 1891-1895. ArticleCASPubMed Google Scholar
McNiece I: The CD34 + Thy1+ cell population: are they all stem cells?. Exp Hematol. 2000, 28: 1312-1314. ArticleCASPubMed Google Scholar
Zon LI: Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature. 2008, 453: 306-313. ArticleCASPubMed Google Scholar
Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW: AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997, 90: 5002-5012. CASPubMed Google Scholar
Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE: Generation of a functional mammary gland from a single stem cell. Nature. 2006, 439: 84-88. ArticleCASPubMed Google Scholar
Spangrude GJ, Brooks DM: Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly-6A/E by bone marrow cells. Blood. 1993, 82: 3327-3332. CASPubMed Google Scholar
Corbeil D, Röper K, Hellwig A, Tavian M, Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW, Huttner WB: The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem. 2000, 275 (8): 5512-5520. ArticleCASPubMed Google Scholar
Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, Corallo M, Martinelli E, Rutella S, Paglia A, Zannoni G, Mancuso S, Scambia G: Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer. 2008, 18: 506-514. ArticleCASPubMed Google Scholar
Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z, Bentley RC, Mori S, Fujii S, Marks JR, Berchuck A, Murphy SK: Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene. 2009, 28 (2): 209-218. ArticleCASPubMed Google Scholar
Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, Roberts DJ, Seiden MV, Scadden DT, Rueda BR, Foster R: CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 2009, 27 (12): 2875-83. CASPubMed Google Scholar
Heider KH, Kuthan H, Stehle G, Munzert G: CD44v6: a target for antibody-based cancer therapy. Cancer Immunol Immunother. 2004, 53: 567-579. ArticleCASPubMed Google Scholar
Chen J, Wang J, Chen D, Yang J, Yang C, Zhang Y, Zhang H, Dou J: Evaluation of characteristics of CD44 + CD117+ ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biol. 2013, 14: 7- ArticleCASPubMedPubMed Central Google Scholar
Wei X, Dombkowski D, Meirelles K, Pieretti-Vanmarcke R, Szotek PP, Chang HL, Preffer FI, Mueller PR, Teixeira J, MacLaughlin DT, Donahoe PK: Mullerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics. Proc Natl Acad Sci USA. 2010, 107 (44): 18874-9. ArticleCASPubMedPubMed Central Google Scholar
Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996, 183: 1797-1806. ArticleCASPubMed Google Scholar
Kvinlaug BT, Huntly BJ: Targeting cancer stem cells. Expert Opin Ther Targets. 2007, 11: 915-927. ArticleCASPubMed Google Scholar
Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H: Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology. 2006, 44: 240-251. ArticleCASPubMed Google Scholar
Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F: Cancer stem cell characteristics in retinoblastoma. Mol Vis. 2005, 11: 729-737. CASPubMed Google Scholar
Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF, Mori M: Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006, 24: 506-513. ArticleCASPubMed Google Scholar
Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK: A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci. 2004, 101: 14228-14233. ArticleCASPubMedPubMed Central Google Scholar
Kondo T, Setoguchi T, Taga T: Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci. 2004, 101: 781-786. ArticleCASPubMedPubMed Central Google Scholar
Wulf GG, Wang RY, Kuehnle I, Weidner D, Marini F, Brenner MK, Andreeff M, Goodell MA: A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood. 2001, 98: 1166-1173. ArticleCASPubMed Google Scholar
Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, MacLaughlin DT, Donahoe PK: Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA. 2006, 103: 11154-11159. ArticleCASPubMedPubMed Central Google Scholar
Moserle L, Indraccolo S, Ghisi M, Frasson C, Fortunato E, Canevari S, Miotti S, Tosello V, Zamarchi R, Corradin A, Minuzzo S, Rossi E, Basso G, Amadori A: The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. Cancer Res. 2008, 68: 5658-5668. ArticleCASPubMed Google Scholar
Kristiansen G, Sammar M, Altevogt P: Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol. 2004, 35 (3): 255-262. ArticleCASPubMed Google Scholar
Gao MQ, Choi YP, Kang S, Youn JH, Cho NH: CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010, 29 (18): 2672-2680. ArticleCASPubMed Google Scholar
Miettinen M, Lasota J: KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Applied Immunohistochemistry and Molecular Morphology. 2005, 13 (3): 205-220. ArticleCASPubMed Google Scholar
Luo L, Zeng J, Liang B, Zhao Z, Sun L, Cao D, Yang J, Shen K: Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp Mol Pathol. 2011, 91: 596-602. ArticleCASPubMed Google Scholar
Raspollini MR, Amunni G, Villanucci A, Baroni G, Taddei A, Taddei GL: c-KIT expression and correlation with chemotherapy resistance in ovarian carcinoma: an immunocytochemical study. Ann Oncol. 2004, 15 (4): 594-597. 2004 ArticleCASPubMed Google Scholar
Chau WK, Ip CK, Mak AS, Lai HC, Wong AS: c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/beta-catenin-ATP-binding cassette G2 signaling. Oncogene. in press
Pauli C, Münz M, Kieu C, Mack B, Breinl P, Wollenberg B, Lang S, Zeidler R, Gires O: Tumor-specific glycosylation of the carcinoma-associated epithelial cell adhesion molecule EpCAM in head and neck carcinomas. Cancer Lett. 2003, 193 (1): 25-32. ArticleCASPubMed Google Scholar
Gosens MJEM, Van Kempen LCL, Van De Velde CHJ, Van Krieken JHJM, Nagtegaal ID: Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod Pathol. 2007, 20 (2): 221-232. ArticleCASPubMed Google Scholar
Thiery JP, Acloque H, Huang RYJ, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 2009, 139 (5): 871-890. ArticleCASPubMed Google Scholar
Moreb JS: Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther. 2008, 3: 237-246. ArticleCASPubMed Google Scholar
Glinsky GV, Olga Berezovska O, Glinskii AB: Microarray analysis identifies a death from cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005, 115: 1503-1521. ArticleCASPubMedPubMed Central Google Scholar
Shi J, Zhou Z, Di W, Li N: Correlation of CD44v6 expression with ovarian cancer progression and recurrence. BMC Cancer. 2013, 13: 182- ArticleCASPubMedPubMed Central Google Scholar
Rosanò L, Cianfrocca R, Spinella F, Di Castro V, Nicotra MR, Lucidi A, Ferrandina G, Natali PG, Bagnato A: Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells. Clin Cancer Res. 2011, 17 (8): 2350-60. ArticlePubMedCAS Google Scholar
Tilly JL, Rueda BR: Minireview: stem cell contribution to ovarian development, function, and disease. Endocrinology. 2008, 149: 4307-4311. ArticleCASPubMedPubMed Central Google Scholar
Kobel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C, Leung S, Bowen NJ, Ionescu DN, Rajput A, Prentice LM, Miller D, Santos J, Swenerton K, Gilks CB, Huntsman D: Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med. 2008, 5 (12): e232- ArticlePubMedPubMed CentralCAS Google Scholar
Lawrenson K, Gayther SA: Ovarian cancer: a clinical challenge that needs some basic answers. PLoS Med. 2009, 6: e25- ArticlePubMed Google Scholar
Landen CN, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB, Gershenson DM, Bast RC, Coleman RL, Lopez-Berestein G, Sood AK: Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther. 2010, 9 (12): 3186-3199. ArticleCASPubMedPubMed Central Google Scholar
Wani AA, Sharma N, Shouche YS, Bapat SA: Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene. 2006, 25: 6336-6344. ArticleCASPubMed Google Scholar
Frosina G: DNA repair in normal and cancer stem cells, with special reference to the central nervous system. Curr Med Chem. 2009, 16: 854-866. ArticleCASPubMed Google Scholar
Lee AS, Kahatapitiya P, Kramer B, Joya JE, Hook J, Liu R, Schevzov G, Alexander IE, McCowage G, Montarras D, Gunning PW, Hardeman EC: Methylguanine DNA methyltransferase-mediated drug resistance-based selective enrichment and engraftment of transplanted stem cells in skeletal muscle. Stem Cells. 2009, 27: 1098-1108. ArticleCASPubMed Google Scholar
Clarke-Pearson DL: Clinical practice–screening for ovarian cancer. N Engl J Med. 2009, 361: 170-177. ArticleCASPubMed Google Scholar
Schwartz PE: Neoadjuvant chemotherapy for the management of ovarian cancer. Best Practice & Research. Clin Obstet Gynaecol. 2002, 16: 585-596. Google Scholar
Phillips TM, McBride WH, Pajonk F: The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006, 98: 1777-1785. ArticlePubMed Google Scholar
Blagosklonny MV: Cancer stem cell and cancer stemloids: from biology to therapy. Cancer Biol Ther. 2007, 6: 1684-1690. ArticleCASPubMed Google Scholar
Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K, Mori M: Cancer stem cells and chemoradiation resistance. Cancer Sci. 2008, 99: 1871-1877. ArticleCASPubMed Google Scholar
Gimenez-Bonafe P, Tortosa A, Perez-Tomas R: Overcoming drug resistance by enhancing apoptosis of tumor cells. Curr Cancer Drug Targets. 2009, 9: 320-340. ArticleCASPubMed Google Scholar
Dean M: ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia. 2009, 14: 3-9. ArticlePubMed Google Scholar
Szaka’cs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM: Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006, 5: 219-234. ArticleCAS Google Scholar
Donnenberg VS, Meyer EM, Donnenberg AD: Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells. Methods Mol Biol. 2009, 568: 261-279. ArticleCASPubMedPubMed Central Google Scholar
Guo Y, Kock K, Ritter CA, Chen ZS, Grube M, Jedlitschky G, Illmer T, Ayres M, Beck JF, Siegmund W, Ehninger G, Gandhi V, Kroemer HK, Kruh GD, Schaich M: Expression of ABCC-type nucleotide exporters in blasts of adult acute myeloid leukemia: relation to long-term survival. Clin Cancer Res. 2009, 15: 1762-1769. ArticleCASPubMed Google Scholar
Martin V, Xu J, Pabbisetty SK, Alonso MM, Liu D, Lee OH, Gumin J, Bhat KP, Colman H, Lang FF, Fueyo J, Gomez-Manzano C: Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters. Oncogene. 2009, 28: 2358-2363. ArticleCASPubMedPubMed Central Google Scholar
van Herwaarden AE, Wagenaar E, Karnekamp B, Merino G, Jonker JW, Schinkel AH: Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis. 2006, 27: 123-130. ArticleCASPubMed Google Scholar
Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP: The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001, 7: 1028-1034. ArticleCASPubMed Google Scholar
Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco M, Dale TC, Smalley MJ: Functional and molecular characterisation of mammary side population cells. Breast Cancer Res. 2003, 5: R1-R8. ArticlePubMedPubMed Central Google Scholar
Cervello I, Gil-Sanchis C, Mas A, Delgado-Rosas F, Martínez-Conejero JA, Galán A, Martínez-Romero A, Martínez S, Navarro I, Ferro J, Horcajadas JA, Esteban FJ, O’Connor JE, Pellicer A, Simón C: Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One. 2010, 5: e10964- ArticlePubMedPubMed CentralCAS Google Scholar
Hosonuma S, Kobayashi Y, Kojo S, Wada H, Seino K, Kiguchi K, Ishizuka B: Clinical significance of side population in ovarian cancer cells. Hum Cell. 2011, 24: 9-12. ArticlePubMedPubMed Central Google Scholar
Hu L, McArthur C, Jaffe RB: Ovarian cancer stemlike side-population cells are tumourigenic and chemoresistant. Br J Cancer. 2010, 102: 1276-1283. ArticleCASPubMedPubMed Central Google Scholar
Kamazawa S, Kigawa J, Kanamori Y, Itamochi H, Sato S, Iba T, Terakawa N: Multidrug resistance gene-1 is a useful predictor of Paclitaxel-based chemotherapy for patients with ovarian cancer. Gynecol Oncol. 2002, 86: 171-176. ArticleCASPubMed Google Scholar
Anderson ME: Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact. 1998, 111–112: 1-14. ArticlePubMed Google Scholar
Backos DS, Franklin CC, Reigan P: The role of glutathione in brain tumor drug resistance. Biochem Pharmacol. 2012, 83 (8): 1005-1012. ArticleCASPubMed Google Scholar
Jedlitschky G, Leier I, Buchholz U, Center M, Keppler D: ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res. 1994, 54 (18): 4833-4836. CASPubMed Google Scholar
Wu WJ, Zhang Y, Zeng ZL, Li XB, Hu KS, Luo HY, Yang J, Huang P, Xu RH: β-phenylethyl isothiocyanate reverses platinum resistance by a GSH-dependent mechanism in cancer cells with epithelial-mesenchymal transition phenotype. Biochem Pharmacol. 2013, 85 (4): 486-96. ArticleCASPubMed Google Scholar
Lessard J, Sauvageau G: Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003, 423 (6937): 255-260. ArticleCASPubMed Google Scholar
Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, Liu H, Keyvanfar K, Chen H, Cao LY, Ahn BH, Kumar NG, Rovira II, Xu XL, van Lohuizen M, Motoyama N, Deng CX, Finkel T: Bmi1 regulatesmitochondrial function and the DNA damage response pathway. Nature. 2009, 459 (7245): 387-392. ArticleCASPubMed Google Scholar
Li J, Gong LY, Song LB, Jiang LL, Liu LP, Wu J, Yuan J, Cai JC, He M, Wang L, Zeng M, Cheng SY, Li M: Oncoprotein Bmi-1 renders apoptotic resistance to glioma cells through activation of the IKK-nuclear factor-kappaB-pathway. Am J Pathol. 2010, 176 (2): 699-709. ArticleCASPubMedPubMed Central Google Scholar
Guo BH, Feng Y, Zhang R, Xu LH, Li MZ, Kung HF, Song LB, Zeng MS: Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol Cancer. 2011, 10: 10- ArticleCASPubMedPubMed Central Google Scholar
Wang E, Bhattacharyya S, Szabolcs A, Rodriguez-Aguayo C, Jennings NB, Lopez-Berestein G, Mukherjee P, Sood AK, Bhattacharya R: Enhancing chemotherapy response with Bmi-1 silencing in ovarian cancer. PLoS ONE. 2011, 6 (3): e17918- ArticleCASPubMedPubMed Central Google Scholar
Fraser M, Bai T, Tsang BK: Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer. 2008, 122 (3): 534-546. ArticleCASPubMed Google Scholar
Nikolaev AY, Li M, Puskas N, Qin J, Gu W: Parc: a cytoplasmic anchor for p53. Cell. 2003, 112 (1): 29-40. ArticleCASPubMed Google Scholar
Woo MG, Xue K, Liu J, McBride H, Tsang BK: Calpain-mediated processing of p53-associated parkin-like cytoplasmic protein (PARC) affects chemosensitivity of human ovarian cancer cells by promoting p53 subcellular trafficking. J Biol Chem. 2012, 287 (6): 3963-3975. ArticleCASPubMedPubMed Central Google Scholar
Wallace-Brodeur RR, Lowe SW: Clinical implications of p53 mutations. Cell Mol Life Sci. 1999, 55: 64-75. ArticleCASPubMed Google Scholar
Kusumbe AP, Bapat SA: Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res. 2009, 69: 9245-9253. ArticleCASPubMed Google Scholar
Peinado H, Portillo F, Cano A: Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol. 2004, 48: 365-375. ArticleCASPubMed Google Scholar
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA: The epithelialmesenchymal transition generates cells with properties of stem cells. Cell. 2008, 133 (4): 704-715. ArticleCASPubMedPubMed Central Google Scholar
Peinado H, Olmeda D, Cano A: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nat Rev Cancer. 2007, 7: 415-428. ArticleCASPubMed Google Scholar
Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP: Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. PNAS. 2001, 98: 6686-6691. ArticleCASPubMedPubMed Central Google Scholar
Polyak K, Weinberg RA: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009, 9: 265-273. ArticleCASPubMed Google Scholar
Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA: Snail and Slug mediate radio- and chemo-resistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 2009, 27: 2059-2068. ArticleCASPubMed Google Scholar
Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES: Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009, 138: 645-659. ArticleCASPubMed Google Scholar
Wicha MS, Liu S, Dontu G: Cancer stem cells: an old idea–a paradigm shift. Cancer Res. 2006, 66: 1883-1890. ArticleCASPubMed Google Scholar
Sell S, Pierce GB: Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest. 1994, 70: 6-22. CASPubMed Google Scholar
Reed EC: Cisplatin. Cancer Chemother Biol Response Modif. 1999, 18: 144-151. CASPubMed Google Scholar
Rolitsky CD, Theil KS, McGaughy VR, Copeland LJ, Niemann TH: HER-2/neu amplification and overexpression in endometrial carcinoma. Int J Gynecol Pathol. 1999, 18: 138-143. ArticleCASPubMed Google Scholar
Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989, 244: 707-712. ArticleCASPubMed Google Scholar
Kim JW, Lee CG, Lyu MS, Kim HK, Rha JG, Kim DH, Kim SJ, Namkoong SE: A new cell line from human undifferentiated carcinoma of the ovary: establishment and characterization. J Cancer Res Clin Oncol. 1997, 123: 82-90. ArticleCASPubMed Google Scholar
Perez-Caro M, Cobaleda C, Gonzalez-Herrero I, Vicente-Dueñas C, Bermejo-Rodríguez C, Sánchez-Beato M, Orfao A, Pintado B, Flores T, Sánchez-Martín M, Jiménez R, Piris MA, Sánchez-García I: Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO J. 2009, 28: 8-20. ArticleCASPubMedPubMed Central Google Scholar
Lara PC, Lloret M, Clavo B, Apolinario RM, Henríquez-Hernández LA, Bordón E, Fontes F, Rey A: Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression. Radiat Oncol. 2009, 4: 29- ArticlePubMedPubMed CentralCAS Google Scholar
Elloul S, Vaksman O, Stavnes HT, Trope CG, Davidson B, Reich R: Mesenchymal-to-epithelial transition determinants as characteristics of ovarian carcinoma effusions. Clin Exp Metastasis. 2010, 27: 161-172. ArticleCASPubMed Google Scholar
Pistollato F, Abbadi S, Rampazzo E, Persano L, Della Puppa A, Frasson C, Sarto E, Scienza R, D’avella D, Basso G: Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells. 2010, 28: 851-862. ArticleCASPubMed Google Scholar
Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL, Meijer GA, van de Wiel MA, Belien JA, van Diest PJ, van der Wall E: Upregulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol. 2005, 206 (3): 291-304. ArticleCASPubMed Google Scholar
Levine AJ, Puzio-Kuter AM: The control of themetabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010, 3 (330(6009)): 1340-4. ArticleCAS Google Scholar
Smith LM, Nesterova A, Ryan MC, Duniho S, Jonas M, Anderson M, Zabinski RF, Sutherland MK, Gerber HP, Van Orden KL, Moore PA, Ruben SM, Carter PJ: CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer. 2008, 99: 100-109. ArticleCASPubMedPubMed Central Google Scholar
Orian-Rousseau V: CD44, a therapeutic target for metastasizing tumours. Eur J Cancer. 2010, 46: 1271-7. ArticleCASPubMed Google Scholar
De Stefano I, Battaglia A, Zannoni GF, Prisco MG, Fattorossi A, Travaglia D, Baroni S, Renier D, Scambia G, Ferlini C, Gallo D: Hyaluronic acid-paclitaxel: effects of intraperitoneal administration against CD44(+) human ovarian cancer xenografts. Cancer Chemother Pharmacol. 2011, 68 (1): 107-16. ArticlePubMedCAS Google Scholar
Bretz NP, Salnikov AV, Perne C, Keller S, Wang X, Mierke CT, Fogel M, Erbe-Hofmann N, Schlange T, Moldenhauer G, Altevogt P: CD24 controls Src/STAT3 activity in human tumors. Cell Mol Life Sci. 2012, 69 (22): 3863-3879. ArticleCASPubMed Google Scholar
Su D, Deng H, Zhao X, Zhang X, Chen L, Chen X, Li Z, Bai Y, Wang Y, Zhong Q, Yi T, Qian Z, Wei Y: Targeting CD24 for treatment of ovarian cancer by short hairpin RNA. Cytotherapy. 2009, 11 (5): 642-652. ArticleCASPubMed Google Scholar
Schilder RJ, Sill MW, Lee RB, Shaw TJ, Senterman MK, Klein-Szanto AJ, Miner Z, Vanderhyden BC: Phase II evaluation of imatinib mesylate in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a gynecologic oncology group study. J Clin Oncol. 2008, 26 (20): 3418-3425. ArticleCASPubMed Google Scholar
Patel BB, He YA, Li XM, Frolov A, Vanderveer L, Slater C, Schilder RJ, von Mehren M, Godwin AK, Yeung AT: Molecular mechanisms of action of imatinib mesylate in human ovarian cancer: a proteomic analysis. Cancer Genomics Proteomics. 2008, 5: 137-150. CASPubMed Google Scholar
Sebastian M, Kuemmel A, Schmidt M, Schmittel A: Catumaxomab: a bispecific trifunctional antibody. Drugs of Today. 2009, 45 (8): 589-597. ArticleCASPubMed Google Scholar
Seimetz D, Lindhofer H, Bokemeyer C: Development and approval of the trifunctional antibody catumaxomab (anti- EpCAM × anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev. 2010, 36 (6): 458-467. ArticleCASPubMed Google Scholar
Marchitti SA, Brocker C, Stagos D, Vasiliou V: Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 2008, 4 (6): 697-720. ArticleCASPubMedPubMed Central Google Scholar
Liu P, Brown S, Goktug T, Channathodiyil P, Kannappan V, Hugnot JP, Guichet PO, Bian X, Armesilla AL, Darling JL, Wang W: Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH positive cancer-stem-like cells. Br J Cancer. 2010, 107 (9): 1488-1497. ArticleCAS Google Scholar
Soignet SL, Benedetti F, Fleischauer A, Parker BA, Truglia JA, Ra Crisp M, Warrell RP: Clinical study of 9-cis retinoic acid (LGD1057) in acute promyelocytic leukemia. Leukemia. 1998, 12 (10): 1518-1521. ArticleCASPubMed Google Scholar
Sell S: Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol. 2004, 51 (1): 1-28. ArticlePubMed Google Scholar
Lim YC, Kang HJ, Kim YS, Choi EC: All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression ofWnt/beta-catenin pathway. Eur J Cancer. 2012, 48 (17): 3310-3318. ArticleCASPubMed Google Scholar
Whitworth JM, Londoño-Joshi AI, Sellers JC, Oliver PJ, Muccio DD, Atigadda VR, Straughn JM, Buchsbaum DJ: The impact of novel retinoids in combination with platinum chemotherapy on ovarian cancer stem cells. Gynecol Oncol. 2012, 125 (1): 226-230. ArticleCASPubMedPubMed Central Google Scholar
Ruiz-Vela A, Aguilar-Gallardo C, Martínez-Arroyo AM, Soriano-Navarro M, Ruiz V, Simón C: Specific unsaturated fatty acids enforce the transdifferentiation of human cancer cells toward adipocyte-like cells. Stem Cell Rev. 2011, 7 (4): 898-909. ArticleCASPubMed Google Scholar
Yin G, Alvero AB, Craveiro V, Holmberg JC, Fu HH, Montagna MK, Yang Y, Chefetz-Menaker I, Nuti S, Rossi M, Silasi DA, Rutherford T, Mor G: Constitutive proteasomal degradation of TWIST-1 in epithelial-ovarian cancer stem cells impacts differentiation and metastatic potential. Oncogene. 2013, 32: 39-49. ArticleCASPubMedPubMed Central Google Scholar
Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, Kyba M, Barton MC: p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol. 2012, 10 (2): 1001268- ArticleCAS Google Scholar
Yu Z, Li Y, Fan H, Liu Z, Pestell RG: miRNAs regulate stem cell self-renewal and differentiation. Frontiers in Genetics. 2012, 3: 191-195. ArticleCASPubMedPubMed Central Google Scholar
Davis ME, Chen ZG, Shin DM: Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008, 7 (9): 771-782. ArticleCASPubMed Google Scholar
Chen ZG: Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med. 2010, 16 (12): 594-602. ArticleCASPubMed Google Scholar
Ruiz-Vela A, Aguilar-Gallardo C, Simón C: Building a framework for embryonic microenvironments and cancer stem cells. Stem Cell Reviews and Reports. 2010, 5 (4): 319-327. Article Google Scholar
Li HJ, Reinhardt F, Herschman HR, Weinberg RA: Cancer stimulated mesenchymal stemcells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discovery. 2012, 2: 840-855. ArticleCASPubMed Google Scholar
Lis R, Touboul C, Raynaud CM, Malek JA, Suhre K, Mirshahi M, Rafii A: Mesenchymal cell interaction with ovarian cancer cells triggers pro-metastatic properties. PLoS One. 2012, 7 (5): 38340- ArticleCAS Google Scholar
Katz E, Skorecki K, Tzukerman M: Niche-dependent tumorigenic capacity of malignant ovarian ascites-derived cancer ceil subpopulations. Clin Cancer Res. 2009, 15 (1): 70-80. ArticleCASPubMed Google Scholar
Liang D, Ma Y, Liu J, Trope CG, Holm R, Nesland JM, Suo Z: The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer. 2012, 12: 201-211. ArticleCASPubMedPubMed Central Google Scholar
La Barge MA: The difficulty of targeting cancer stem cell niches. Clin Cancer Res. 2010, 16 (12): 3121-3129. ArticleCAS Google Scholar
Lavon I, Zrihan D, Granit A, Einstein O, Fainstein N, Cohen MA, Cohen MA, Zelikovitch B, Shoshan Y, Spektor S, Reubinoff BE, Felig Y, Gerlitz O, Ben-Hur T, Smith Y, Siegal T: Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro Oncol. 2010, 12 (5): 422-433. CASPubMedPubMed Central Google Scholar
van Jaarsveld MTM, Helleman J, Berns EMJJ, Wiemer EAC: MicroRNAs in ovarian cancer biology and therapy resistance. Int J Biochem Cell Biol. 2010, 42 (8): 1282-1290. ArticleCASPubMed Google Scholar
Xu CX, Xu M, Tan L, Yang H, Permuth-Wey J, Kruk PA, Wenham RM, Nicosia SV, Lancaster JM, Sellers TA, Cheng JQ: MicroRNA MiR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. J Biol Chem. 2012, 287 (42): 34970-34978. ArticleCASPubMedPubMed Central Google Scholar
Cheng W, Liu T, Wan X, Gao Y, Wang H: MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 2012, 279 (11): 2047-2059. ArticleCASPubMed Google Scholar
Wu Q, Guo R, Lin M, Zhou B, Wang Y: MicroRNA- 200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting E-cadherin repressor ZEB2. Gynecol Oncol. 2011, 122 (1): 149-154. ArticleCASPubMed Google Scholar
Sarkar FH, Li Y, Wang Z, Kong D, Ali S: Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat. 2010, 13 (3): 57-66. ArticleCASPubMedPubMed Central Google Scholar
Zhong X, Li N, Liang S, Huang Q, Coukos G, Zhang L: Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J Biol Chem. 2010, 285 (53): 41961-41971. ArticleCASPubMedPubMed Central Google Scholar
Djordjevic B, Stojanovic S, Conic I, Jankovic-Velickovic L, Vukomanovic P, Zivadinovic R, Vukadinovic M: Current approach to epithelial ovarian cancer based on the concept of cancer stem cells. J BUON. 2012, 17 (4): 627-36. CASPubMed Google Scholar
Chefetz I, Alvero AB, Holmberg JC, Lebowitz N, Craveiro V, Yang-Hartwich Y, Yin G, Squillace L, Gurrea Soteras M, Aldo P, Mor G: TLR2 enhances ovarian cancer stem cell self-renewal and promotes tumor repair and recurrence. Cell Cycle. 2013, 12 (3): 511-21. ArticleCASPubMedPubMed Central Google Scholar
Kang KS, Choi YP, Gao MQ, Kang S, Kim BG, Lee JH, Kwon MJ, Shin YK, Cho NH: CD24(+) ovary cancer cells exhibit an invasive mesenchymal phenotype. Biochem Biophys Res Commun. 2013, 432 (2): 333-8. ArticleCASPubMed Google Scholar