Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach (original) (raw)

References

  1. Murdoch WJ, McDonnel AC: Roles of the ovarian surface epithelium in ovulation and carcinogenesis. Reproduction. 2002, 123 (6): 743-750.
    Article CAS PubMed Google Scholar
  2. Godwin AK, Testa JR, Hamilton TC: The biology of ovarian cancer development. Cancer. 1993, 71 (2 Suppl): 530-536.
    CAS PubMed Google Scholar
  3. Ness RB, Cottreau C: Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst. 1999, 91 (17): 1459-1467.
    Article CAS PubMed Google Scholar
  4. Siegel R, Ward E, Brawley O, Jemal A: Cancer statistics, 2011. CA Cancer J Clin. 2011, 61: 212-236.
    Article PubMed Google Scholar
  5. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics, 2009. CA Cancer J Clin. 2009, 59: 225-249.
    Article PubMed Google Scholar
  6. Boring CC, Squires TS, Tong T: Cancer statistics, 1993. CA Cancer J Clin. 1993, 43: 7-26.
    Article CAS PubMed Google Scholar
  7. Kusumbe AP, Bapat SA: Ovarian stem cell biology and the emergence of ovarian cancer stem cells. Cancer Stem Cells. Edited by: Bapat S, Hoboken NJ. 2008, Hoboken: John Wiley & Sons Inc, 95-110.
    Chapter Google Scholar
  8. Bast RC, Hennessy B, Mills GB: The biology of ovarian cancer: new opportunities for translation. Nature Reviews. Cancer. 2009, 9: 415-428.
    CAS PubMed PubMed Central Google Scholar
  9. Wikborn C, Pettersson F, Silfversward C, Moberg PJ: Symptoms and diagnostic difficulties in ovarian epithelial cancer. Int J Gynaecol Obstet. 1993, 42: 261-264.
    Article CAS PubMed Google Scholar
  10. Ghasemi R, Grassadonia A, Tinari N, Piccolo E, Natoli C, Tomao F, Iacobelli S: Tumor-derived microvesicles: the metastasomes. Medical Hypotheses. Med Hypotheses. 2013, 80 (1): 75-82.
    Article CAS PubMed Google Scholar
  11. Fleming GF, Ronnet BM, Seidman J: Epithelial ovarian cancer. Principles and Practice of Gynecologic Oncology. Edited by: Barakat RR, Markman M, Randal ME. 2009, Philadelphia: Lippincot Williams & Wilkins, 763-836. 5
    Google Scholar
  12. Kurman RJ, Shih Ie M: The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010, 34: 433-443.
    Article PubMed PubMed Central Google Scholar
  13. Kauffman RP, Griffin SJ, Lund JD, Tullar PE: Recommendations for cervical cancer screening: do they render the annual pelvic examination obsolete?. Med Princ Pract. in press
  14. Banerjee S, Kaye SB: New strategies in the treatment of ovarian cancer -current clinical perspectives and future potential. Clin Cancer Res. in press
  15. Hennessy BT, Coleman RL, Markman M: Ovarian cancer. Lancet. 2009, 374: 1371-82.
    Article CAS PubMed Google Scholar
  16. Ozols RF: Update on the management of ovarian cancer. Cancer J. 2002, 8 (Suppl 3): 22-30.
    Google Scholar
  17. Dalerba P, Cho RW, Clarke MF: Cancer stem cells: models and concepts. Annu Rev Med. 2007, 58: 267-284.
    Article CAS PubMed Google Scholar
  18. Jordan CT, Guzman ML, Noble M: Cancer stem cells. N Engl J Med. 2006, 355: 1253-1261.
    Article CAS PubMed Google Scholar
  19. Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 2001, 414: 105-111.
    Article CAS PubMed Google Scholar
  20. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, Silasi DA, Steffensen KD, Waldstrom M, Visintin I, Mor G: Molecular phenotyping of human ovarian cancer stem cells unravel the mechanisms for repair and chemo-resistance. Cell Cycle. 2009, 8 (Suppl. 1): 158-166.
    Article CAS PubMed PubMed Central Google Scholar
  21. Mor G, Yin G, Chefetz I, Yang Y, Alvero A: Ovarian cancer stem cells and inflammation. Cancer Biol Ther. 2011, 11: 708-713.
    Article PubMed PubMed Central Google Scholar
  22. Bapat SA, Mali AM, Koppikar CB, Kurrey NK: Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005, 65: 3025-3029.
    CAS PubMed Google Scholar
  23. Lim D, Oliva E: Precursors and pathogenesis of ovarian carcinoma. Pathology. 2013, 45 (3): 229-42.
    Article CAS PubMed Google Scholar
  24. Auersperg N: The origin of ovarian carcinomas: a unifying hypothesis. Int J Gynecol Pathol. 2011, 30 (1): 12-21.
    Article PubMed Google Scholar
  25. Tinelli A, Vergara D, Martignago R, Leo G, Pisanò M, Malvasi A: An outlook on ovarian cancer and borderline ovarian tumors: focus on genomic and proteomic findings. Curr Genomics. 2009, 10 (4): 240-9.
    Article CAS PubMed PubMed Central Google Scholar
  26. Farley J, Ozbun LL, Birrer MJ: Genomic analysis of epithelial ovarian cancer. Cell Res. 2008, 18 (5): 538-48.
    Article CAS PubMed Google Scholar
  27. Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, Scurry JP, Scolyer RA, Smith AN, Bali A, Vanden Bergh P, Baron-Hay S, Scott C, Fink D, Hacker NF, Sutherland RL, O’Brien PM: A distinct molecular profile associated with mucinous epithelial ovarian cancer. Br J Cancer. 2006, 94 (6): 904-13.
    Article CAS PubMed PubMed Central Google Scholar
  28. Kurrey NK, Amit K, Bapat SA: Snail and slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol. 2005, 97: 155-165.
    Article CAS PubMed Google Scholar
  29. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP: Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008, 68: 4311-4320.
    Article CAS PubMed PubMed Central Google Scholar
  30. Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S, Connolly DC, Zhang Y, Montone K, Bützow R, Coukos G, Zhang L: Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform1 (ALDH1), in human epithelial cancers. PLoS ONE. 2010, 5: e10277-
    Article PubMed PubMed Central CAS Google Scholar
  31. Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, Ginestier C, Johnston C, Kueck A, Reynolds RK, Wicha MS, Buckanovich RJ: Aldehyde dehydrogenase and CD133 define angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 2011, 71: 3991-4001.
    Article CAS PubMed PubMed Central Google Scholar
  32. Dyall S, Gayther SA, Dafou D: Cancer stem cells and epithelial ovarian cancer. 2010, Oncology: Journal of, 105269-
    Google Scholar
  33. Bast RC, Mills GB: Personalizing therapy for ovarian cancer: BRCAness and beyond. J Clin Oncol. 2010, 28 (22): 3545-3548.
    Article CAS PubMed Google Scholar
  34. Pardal R, Clarke MF, Morrison SJ: Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003, 3: 895-902.
    Article CAS PubMed Google Scholar
  35. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM: Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006, 66: 9339-9344.
    Article CAS PubMed Google Scholar
  36. Kurman RJ, Visvanathan K, Roden R, Wu TC, Shih IM: Early detection and treatment of ovarian cancer: shifting from early stage to minimal volume of disease based on a new model of carcinogenesis. Am J Obstet Gynecol. 2008, 198: 351-356.
    Article PubMed PubMed Central Google Scholar
  37. Pisano C, Bruni GS, Facchini G, Marchetti C, Pignata S: Treatment of recurrent epithelial ovarian cancer. Ther Clin Risk Manag. 2009, 5: 421-426.
    CAS PubMed PubMed Central Google Scholar
  38. Pujade-Lauraine E, Wagner U, Aavall-Lundqvist E, Gebski V, Heywood M, Vasey PA, Volgger B, Vergote I, Pignata S, Ferrero A, Sehouli J, Lortholary A, Kristensen G, Jackisch C, Joly F, Brown C, Le Fur N, du Bois A: Pegylated liposomal Doxorubicin and Carboplatin compared with Paclitaxel and Carboplatin for patients with platinum-sensitive ovarian cancer in late relapse. J Clin Oncol. 2010, 28: 3323-3329.
    Article CAS PubMed Google Scholar
  39. Monk BJ, Herzog TJ, Kaye SB, Krasner CN, Vermorken JB, Muggia FM, Pujade-Lauraine E, Park YC, Parekh TV, Poveda AM: Trabectedin plus pegylated liposomal Doxorubicin in recurrent ovarian cancer. J Clin Oncol. 2010, 28: 3107-3114.
    Article CAS PubMed Google Scholar
  40. Benedetti-Panici P, Perniola G, Marchetti C, Pernice M, Donfrancesco C, Di Donato V, Tomao F, Palaia I, Graziano M, Basile S, Bellati F: Intraperitoneal chemotherapy by ultrasound-guided direct puncture in recurrent ovarian cancer: feasibility, compliance, and complications. Int J Gynecol Cancer. 2012, 22 (6): 1069-74.
    Article PubMed Google Scholar
  41. Tomao F, Panici PB, Frati L, Tomao S: Emerging role of pemetrexed in ovarian cancer. Expert Rev Anticancer Ther. 2009, 9 (12): 1727-35.
    Article PubMed Google Scholar
  42. Bellati F, Napoletano C, Gasparri ML, Ruscito I, Marchetti C, Pignata S, Tomao F, Benedetti Panici P, Nuti M: Current knowledge and open issues regarding bevacizumab in gynecological neoplasms. Crit Rev Oncol Hematol. 2012, 83 (1): 35-46.
    Article PubMed Google Scholar
  43. Tomao F, Benedetti Panici P, Tomao S: Improvement in progression free survival in oceans bevacizumab arm: a critical point of view. J Clin Oncol. 2013, 31 (1): 166-7.
    Article PubMed Google Scholar
  44. Guarneri V, Piacentini F, Barbieri E, Conte PF: Achievements and unmet needs in the management of advanced ovarian cancer. Gynecol Oncol. 2010, 117 (2): 152-158.
    Article CAS PubMed Google Scholar
  45. Itamochi H: Targeted therapies in epithelial ovarian cancer: molecular mechanisms of action. World Journal of Biological Chemistry. 2010, 1 (7): 209-220.
    Article PubMed PubMed Central Google Scholar
  46. Croker AK, Allan AL: Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med. 2008, 12 (2): 374-390.
    Article CAS PubMed PubMed Central Google Scholar
  47. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006, 444 (7120): 756-760.
    Article CAS PubMed Google Scholar
  48. Molofsky AV, Pardal R, Morrison SJ: Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol. 2004, 16: 700-707.
    Article CAS PubMed Google Scholar
  49. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006, 66 (12): 6063-6071.
    Article CAS PubMed PubMed Central Google Scholar
  50. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, Clouthier SG, Wicha MS: Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling. PLoS Biol. 2009, 7 (6): e1000121-
    Article PubMed PubMed Central CAS Google Scholar
  51. Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S, Sesterhenn IA, McLeod DG, Srivastava S, Rhim JS: Identification of putative stem cell markers, CD133 and CXCR4, in hTERTimmortalized primary nonmalignant and malignant tumorderived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res. 2007, 67 (7): 3153-3161.
    Article CAS PubMed Google Scholar
  52. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS: Breast cancer cell lines contain functional cancer stem sells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009, 69 (4): 1302-1313.
    Article CAS PubMed PubMed Central Google Scholar
  53. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003, 17 (10): 1253-1270.
    Article CAS PubMed PubMed Central Google Scholar
  54. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW: Epigenetic stem cell signature in cancer. Nat Genet. 2007, 39 (2): 157-158.
    Article CAS PubMed Google Scholar
  55. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003, 100: 3983-3988.
    Article CAS PubMed PubMed Central Google Scholar
  56. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumour initiating cells. Nature. 2004, 432: 396-40.
    Article CAS PubMed Google Scholar
  57. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2007, 64: 7011-7021.
    Article Google Scholar
  58. O’Brien CA, Pollett A, Gallinger S, Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007, 445: 106-110.
    Article PubMed CAS Google Scholar
  59. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R: Identification and expansion of human colon-cancer-initiating cells. Nature. 2007, 445: 111-115.
    Article CAS PubMed Google Scholar
  60. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 2007, 104: 973-978.
    Article CAS PubMed PubMed Central Google Scholar
  61. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res. 2007, 67: 1030-1037.
    Article CAS PubMed Google Scholar
  62. Dick JE, Bhatia M, Gan O, Kapp U: Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells. 1997, 15 (Suppl. 1): 199-207.
    Article PubMed Google Scholar
  63. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ: Efficient tumour formation by single human melanoma cells. Nature. 2008, 456 (7222): 593-598.
    Article CAS PubMed PubMed Central Google Scholar
  64. Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997, 3: 730-737.
    Article CAS PubMed Google Scholar
  65. Dalerba P, Clarke MF: Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell. 2007, 1: 241-242.
    Article CAS PubMed Google Scholar
  66. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007, 104: 10158-10163.
    Article CAS PubMed PubMed Central Google Scholar
  67. Hill RP: Identifying cancer stem cells in solid tumors: case not proven. Cancer Res. 2006, 66: 1891-1895.
    Article CAS PubMed Google Scholar
  68. Hill RP, Perris R: “Destemming” cancer stem cells. J Natl Cancer Inst. 2007, 99: 1435-1440.
    Article CAS PubMed Google Scholar
  69. Vogel G: Stem cells. ‘Stemness’ genes still elusive. Science. 2003, 302: 371-
    Article CAS PubMed Google Scholar
  70. Orkin SH, Zon LI: Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008, 132: 631-644.
    Article CAS PubMed PubMed Central Google Scholar
  71. McNiece I: The CD34 + Thy1+ cell population: are they all stem cells?. Exp Hematol. 2000, 28: 1312-1314.
    Article CAS PubMed Google Scholar
  72. Zon LI: Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature. 2008, 453: 306-313.
    Article CAS PubMed Google Scholar
  73. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW: AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997, 90: 5002-5012.
    CAS PubMed Google Scholar
  74. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE: Generation of a functional mammary gland from a single stem cell. Nature. 2006, 439: 84-88.
    Article CAS PubMed Google Scholar
  75. Spangrude GJ, Brooks DM: Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly-6A/E by bone marrow cells. Blood. 1993, 82: 3327-3332.
    CAS PubMed Google Scholar
  76. Corbeil D, Röper K, Hellwig A, Tavian M, Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW, Huttner WB: The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem. 2000, 275 (8): 5512-5520.
    Article CAS PubMed Google Scholar
  77. Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, Corallo M, Martinelli E, Rutella S, Paglia A, Zannoni G, Mancuso S, Scambia G: Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer. 2008, 18: 506-514.
    Article CAS PubMed Google Scholar
  78. Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z, Bentley RC, Mori S, Fujii S, Marks JR, Berchuck A, Murphy SK: Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene. 2009, 28 (2): 209-218.
    Article CAS PubMed Google Scholar
  79. Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, Roberts DJ, Seiden MV, Scadden DT, Rueda BR, Foster R: CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 2009, 27 (12): 2875-83.
    CAS PubMed Google Scholar
  80. Heider KH, Kuthan H, Stehle G, Munzert G: CD44v6: a target for antibody-based cancer therapy. Cancer Immunol Immunother. 2004, 53: 567-579.
    Article CAS PubMed Google Scholar
  81. Chen J, Wang J, Chen D, Yang J, Yang C, Zhang Y, Zhang H, Dou J: Evaluation of characteristics of CD44 + CD117+ ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biol. 2013, 14: 7-
    Article CAS PubMed PubMed Central Google Scholar
  82. Wei X, Dombkowski D, Meirelles K, Pieretti-Vanmarcke R, Szotek PP, Chang HL, Preffer FI, Mueller PR, Teixeira J, MacLaughlin DT, Donahoe PK: Mullerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics. Proc Natl Acad Sci USA. 2010, 107 (44): 18874-9.
    Article CAS PubMed PubMed Central Google Scholar
  83. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996, 183: 1797-1806.
    Article CAS PubMed Google Scholar
  84. Kvinlaug BT, Huntly BJ: Targeting cancer stem cells. Expert Opin Ther Targets. 2007, 11: 915-927.
    Article CAS PubMed Google Scholar
  85. Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H: Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology. 2006, 44: 240-251.
    Article CAS PubMed Google Scholar
  86. Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F: Cancer stem cell characteristics in retinoblastoma. Mol Vis. 2005, 11: 729-737.
    CAS PubMed Google Scholar
  87. Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF, Mori M: Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006, 24: 506-513.
    Article CAS PubMed Google Scholar
  88. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK: A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci. 2004, 101: 14228-14233.
    Article CAS PubMed PubMed Central Google Scholar
  89. Kondo T, Setoguchi T, Taga T: Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci. 2004, 101: 781-786.
    Article CAS PubMed PubMed Central Google Scholar
  90. Wulf GG, Wang RY, Kuehnle I, Weidner D, Marini F, Brenner MK, Andreeff M, Goodell MA: A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood. 2001, 98: 1166-1173.
    Article CAS PubMed Google Scholar
  91. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, MacLaughlin DT, Donahoe PK: Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA. 2006, 103: 11154-11159.
    Article CAS PubMed PubMed Central Google Scholar
  92. Moserle L, Indraccolo S, Ghisi M, Frasson C, Fortunato E, Canevari S, Miotti S, Tosello V, Zamarchi R, Corradin A, Minuzzo S, Rossi E, Basso G, Amadori A: The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. Cancer Res. 2008, 68: 5658-5668.
    Article CAS PubMed Google Scholar
  93. Kristiansen G, Sammar M, Altevogt P: Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol. 2004, 35 (3): 255-262.
    Article CAS PubMed Google Scholar
  94. Gao MQ, Choi YP, Kang S, Youn JH, Cho NH: CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010, 29 (18): 2672-2680.
    Article CAS PubMed Google Scholar
  95. Miettinen M, Lasota J: KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Applied Immunohistochemistry and Molecular Morphology. 2005, 13 (3): 205-220.
    Article CAS PubMed Google Scholar
  96. Luo L, Zeng J, Liang B, Zhao Z, Sun L, Cao D, Yang J, Shen K: Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp Mol Pathol. 2011, 91: 596-602.
    Article CAS PubMed Google Scholar
  97. Raspollini MR, Amunni G, Villanucci A, Baroni G, Taddei A, Taddei GL: c-KIT expression and correlation with chemotherapy resistance in ovarian carcinoma: an immunocytochemical study. Ann Oncol. 2004, 15 (4): 594-597. 2004
    Article CAS PubMed Google Scholar
  98. Chau WK, Ip CK, Mak AS, Lai HC, Wong AS: c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/beta-catenin-ATP-binding cassette G2 signaling. Oncogene. in press
  99. Imrich S, Hachmeister M, Gires O: EpCAM and its potential role in tumor-initiating cells. Cell Adh Migr. 2012, 6: 30-38.
    Article PubMed PubMed Central Google Scholar
  100. Pauli C, Münz M, Kieu C, Mack B, Breinl P, Wollenberg B, Lang S, Zeidler R, Gires O: Tumor-specific glycosylation of the carcinoma-associated epithelial cell adhesion molecule EpCAM in head and neck carcinomas. Cancer Lett. 2003, 193 (1): 25-32.
    Article CAS PubMed Google Scholar
  101. Gosens MJEM, Van Kempen LCL, Van De Velde CHJ, Van Krieken JHJM, Nagtegaal ID: Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod Pathol. 2007, 20 (2): 221-232.
    Article CAS PubMed Google Scholar
  102. Baeuerle PA, Gires O: EpCAM (CD326) finding its role in cancer. Br J Cancer. 2007, 96 (3): 417-423.
    Article CAS PubMed PubMed Central Google Scholar
  103. Thiery JP, Acloque H, Huang RYJ, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 2009, 139 (5): 871-890.
    Article CAS PubMed Google Scholar
  104. Moreb JS: Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther. 2008, 3: 237-246.
    Article CAS PubMed Google Scholar
  105. Glinsky GV, Olga Berezovska O, Glinskii AB: Microarray analysis identifies a death from cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005, 115: 1503-1521.
    Article CAS PubMed PubMed Central Google Scholar
  106. Shi J, Zhou Z, Di W, Li N: Correlation of CD44v6 expression with ovarian cancer progression and recurrence. BMC Cancer. 2013, 13: 182-
    Article CAS PubMed PubMed Central Google Scholar
  107. Rosanò L, Cianfrocca R, Spinella F, Di Castro V, Nicotra MR, Lucidi A, Ferrandina G, Natali PG, Bagnato A: Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells. Clin Cancer Res. 2011, 17 (8): 2350-60.
    Article PubMed CAS Google Scholar
  108. Tilly JL, Rueda BR: Minireview: stem cell contribution to ovarian development, function, and disease. Endocrinology. 2008, 149: 4307-4311.
    Article CAS PubMed PubMed Central Google Scholar
  109. Kobel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C, Leung S, Bowen NJ, Ionescu DN, Rajput A, Prentice LM, Miller D, Santos J, Swenerton K, Gilks CB, Huntsman D: Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med. 2008, 5 (12): e232-
    Article PubMed PubMed Central CAS Google Scholar
  110. Lawrenson K, Gayther SA: Ovarian cancer: a clinical challenge that needs some basic answers. PLoS Med. 2009, 6: e25-
    Article PubMed Google Scholar
  111. Tothill IE: Biosensors for cancer markers diagnosis. Semin Cell Dev Biol. 2009, 20: 55-62.
    Article CAS PubMed Google Scholar
  112. Landen CN, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB, Gershenson DM, Bast RC, Coleman RL, Lopez-Berestein G, Sood AK: Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther. 2010, 9 (12): 3186-3199.
    Article CAS PubMed PubMed Central Google Scholar
  113. Wani AA, Sharma N, Shouche YS, Bapat SA: Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene. 2006, 25: 6336-6344.
    Article CAS PubMed Google Scholar
  114. Frosina G: DNA repair in normal and cancer stem cells, with special reference to the central nervous system. Curr Med Chem. 2009, 16: 854-866.
    Article CAS PubMed Google Scholar
  115. Lee AS, Kahatapitiya P, Kramer B, Joya JE, Hook J, Liu R, Schevzov G, Alexander IE, McCowage G, Montarras D, Gunning PW, Hardeman EC: Methylguanine DNA methyltransferase-mediated drug resistance-based selective enrichment and engraftment of transplanted stem cells in skeletal muscle. Stem Cells. 2009, 27: 1098-1108.
    Article CAS PubMed Google Scholar
  116. Clarke-Pearson DL: Clinical practice–screening for ovarian cancer. N Engl J Med. 2009, 361: 170-177.
    Article CAS PubMed Google Scholar
  117. Schwartz PE: Neoadjuvant chemotherapy for the management of ovarian cancer. Best Practice & Research. Clin Obstet Gynaecol. 2002, 16: 585-596.
    Google Scholar
  118. Phillips TM, McBride WH, Pajonk F: The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006, 98: 1777-1785.
    Article PubMed Google Scholar
  119. Blagosklonny MV: Cancer stem cell and cancer stemloids: from biology to therapy. Cancer Biol Ther. 2007, 6: 1684-1690.
    Article CAS PubMed Google Scholar
  120. Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K, Mori M: Cancer stem cells and chemoradiation resistance. Cancer Sci. 2008, 99: 1871-1877.
    Article CAS PubMed Google Scholar
  121. Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674.
    Article CAS PubMed Google Scholar
  122. Gimenez-Bonafe P, Tortosa A, Perez-Tomas R: Overcoming drug resistance by enhancing apoptosis of tumor cells. Curr Cancer Drug Targets. 2009, 9: 320-340.
    Article CAS PubMed Google Scholar
  123. Dean M: ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia. 2009, 14: 3-9.
    Article PubMed Google Scholar
  124. Szaka’cs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM: Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006, 5: 219-234.
    Article CAS Google Scholar
  125. Donnenberg VS, Meyer EM, Donnenberg AD: Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells. Methods Mol Biol. 2009, 568: 261-279.
    Article CAS PubMed PubMed Central Google Scholar
  126. Guo Y, Kock K, Ritter CA, Chen ZS, Grube M, Jedlitschky G, Illmer T, Ayres M, Beck JF, Siegmund W, Ehninger G, Gandhi V, Kroemer HK, Kruh GD, Schaich M: Expression of ABCC-type nucleotide exporters in blasts of adult acute myeloid leukemia: relation to long-term survival. Clin Cancer Res. 2009, 15: 1762-1769.
    Article CAS PubMed Google Scholar
  127. Martin V, Xu J, Pabbisetty SK, Alonso MM, Liu D, Lee OH, Gumin J, Bhat KP, Colman H, Lang FF, Fueyo J, Gomez-Manzano C: Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters. Oncogene. 2009, 28: 2358-2363.
    Article CAS PubMed PubMed Central Google Scholar
  128. van Herwaarden AE, Wagenaar E, Karnekamp B, Merino G, Jonker JW, Schinkel AH: Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis. 2006, 27: 123-130.
    Article CAS PubMed Google Scholar
  129. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP: The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001, 7: 1028-1034.
    Article CAS PubMed Google Scholar
  130. Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco M, Dale TC, Smalley MJ: Functional and molecular characterisation of mammary side population cells. Breast Cancer Res. 2003, 5: R1-R8.
    Article PubMed PubMed Central Google Scholar
  131. Cervello I, Gil-Sanchis C, Mas A, Delgado-Rosas F, Martínez-Conejero JA, Galán A, Martínez-Romero A, Martínez S, Navarro I, Ferro J, Horcajadas JA, Esteban FJ, O’Connor JE, Pellicer A, Simón C: Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One. 2010, 5: e10964-
    Article PubMed PubMed Central CAS Google Scholar
  132. Hosonuma S, Kobayashi Y, Kojo S, Wada H, Seino K, Kiguchi K, Ishizuka B: Clinical significance of side population in ovarian cancer cells. Hum Cell. 2011, 24: 9-12.
    Article PubMed PubMed Central Google Scholar
  133. Hu L, McArthur C, Jaffe RB: Ovarian cancer stemlike side-population cells are tumourigenic and chemoresistant. Br J Cancer. 2010, 102: 1276-1283.
    Article CAS PubMed PubMed Central Google Scholar
  134. Grivennikov SI, Greten FR, Karin M: Immunity, inflammation, and cancer. Cell. 2010, 140: 883-899.
    Article CAS PubMed PubMed Central Google Scholar
  135. Kamazawa S, Kigawa J, Kanamori Y, Itamochi H, Sato S, Iba T, Terakawa N: Multidrug resistance gene-1 is a useful predictor of Paclitaxel-based chemotherapy for patients with ovarian cancer. Gynecol Oncol. 2002, 86: 171-176.
    Article CAS PubMed Google Scholar
  136. Rodriguez-Antona C: Pharmacogenomics of paclitaxel. Pharmacogenomics. 2010, 11: 621-623.
    Article CAS PubMed Google Scholar
  137. Anderson ME: Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact. 1998, 111–112: 1-14.
    Article PubMed Google Scholar
  138. Backos DS, Franklin CC, Reigan P: The role of glutathione in brain tumor drug resistance. Biochem Pharmacol. 2012, 83 (8): 1005-1012.
    Article CAS PubMed Google Scholar
  139. Jedlitschky G, Leier I, Buchholz U, Center M, Keppler D: ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res. 1994, 54 (18): 4833-4836.
    CAS PubMed Google Scholar
  140. Wu WJ, Zhang Y, Zeng ZL, Li XB, Hu KS, Luo HY, Yang J, Huang P, Xu RH: β-phenylethyl isothiocyanate reverses platinum resistance by a GSH-dependent mechanism in cancer cells with epithelial-mesenchymal transition phenotype. Biochem Pharmacol. 2013, 85 (4): 486-96.
    Article CAS PubMed Google Scholar
  141. Lessard J, Sauvageau G: Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003, 423 (6937): 255-260.
    Article CAS PubMed Google Scholar
  142. Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, Liu H, Keyvanfar K, Chen H, Cao LY, Ahn BH, Kumar NG, Rovira II, Xu XL, van Lohuizen M, Motoyama N, Deng CX, Finkel T: Bmi1 regulatesmitochondrial function and the DNA damage response pathway. Nature. 2009, 459 (7245): 387-392.
    Article CAS PubMed Google Scholar
  143. Li J, Gong LY, Song LB, Jiang LL, Liu LP, Wu J, Yuan J, Cai JC, He M, Wang L, Zeng M, Cheng SY, Li M: Oncoprotein Bmi-1 renders apoptotic resistance to glioma cells through activation of the IKK-nuclear factor-kappaB-pathway. Am J Pathol. 2010, 176 (2): 699-709.
    Article CAS PubMed PubMed Central Google Scholar
  144. Guo BH, Feng Y, Zhang R, Xu LH, Li MZ, Kung HF, Song LB, Zeng MS: Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol Cancer. 2011, 10: 10-
    Article CAS PubMed PubMed Central Google Scholar
  145. Wang E, Bhattacharyya S, Szabolcs A, Rodriguez-Aguayo C, Jennings NB, Lopez-Berestein G, Mukherjee P, Sood AK, Bhattacharya R: Enhancing chemotherapy response with Bmi-1 silencing in ovarian cancer. PLoS ONE. 2011, 6 (3): e17918-
    Article CAS PubMed PubMed Central Google Scholar
  146. Fraser M, Bai T, Tsang BK: Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer. 2008, 122 (3): 534-546.
    Article CAS PubMed Google Scholar
  147. Nikolaev AY, Li M, Puskas N, Qin J, Gu W: Parc: a cytoplasmic anchor for p53. Cell. 2003, 112 (1): 29-40.
    Article CAS PubMed Google Scholar
  148. Woo MG, Xue K, Liu J, McBride H, Tsang BK: Calpain-mediated processing of p53-associated parkin-like cytoplasmic protein (PARC) affects chemosensitivity of human ovarian cancer cells by promoting p53 subcellular trafficking. J Biol Chem. 2012, 287 (6): 3963-3975.
    Article CAS PubMed PubMed Central Google Scholar
  149. Wallace-Brodeur RR, Lowe SW: Clinical implications of p53 mutations. Cell Mol Life Sci. 1999, 55: 64-75.
    Article CAS PubMed Google Scholar
  150. Kusumbe AP, Bapat SA: Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res. 2009, 69: 9245-9253.
    Article CAS PubMed Google Scholar
  151. Peinado H, Portillo F, Cano A: Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol. 2004, 48: 365-375.
    Article CAS PubMed Google Scholar
  152. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA: The epithelialmesenchymal transition generates cells with properties of stem cells. Cell. 2008, 133 (4): 704-715.
    Article CAS PubMed PubMed Central Google Scholar
  153. Peinado H, Olmeda D, Cano A: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nat Rev Cancer. 2007, 7: 415-428.
    Article CAS PubMed Google Scholar
  154. Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP: Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. PNAS. 2001, 98: 6686-6691.
    Article CAS PubMed PubMed Central Google Scholar
  155. Polyak K, Weinberg RA: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009, 9: 265-273.
    Article CAS PubMed Google Scholar
  156. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA: Snail and Slug mediate radio- and chemo-resistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 2009, 27: 2059-2068.
    Article CAS PubMed Google Scholar
  157. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES: Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009, 138: 645-659.
    Article CAS PubMed Google Scholar
  158. Wicha MS, Liu S, Dontu G: Cancer stem cells: an old idea–a paradigm shift. Cancer Res. 2006, 66: 1883-1890.
    Article CAS PubMed Google Scholar
  159. Sell S, Pierce GB: Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest. 1994, 70: 6-22.
    CAS PubMed Google Scholar
  160. Reed EC: Cisplatin. Cancer Chemother Biol Response Modif. 1999, 18: 144-151.
    CAS PubMed Google Scholar
  161. Rolitsky CD, Theil KS, McGaughy VR, Copeland LJ, Niemann TH: HER-2/neu amplification and overexpression in endometrial carcinoma. Int J Gynecol Pathol. 1999, 18: 138-143.
    Article CAS PubMed Google Scholar
  162. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989, 244: 707-712.
    Article CAS PubMed Google Scholar
  163. Kim JW, Lee CG, Lyu MS, Kim HK, Rha JG, Kim DH, Kim SJ, Namkoong SE: A new cell line from human undifferentiated carcinoma of the ovary: establishment and characterization. J Cancer Res Clin Oncol. 1997, 123: 82-90.
    Article CAS PubMed Google Scholar
  164. Perez-Caro M, Cobaleda C, Gonzalez-Herrero I, Vicente-Dueñas C, Bermejo-Rodríguez C, Sánchez-Beato M, Orfao A, Pintado B, Flores T, Sánchez-Martín M, Jiménez R, Piris MA, Sánchez-García I: Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO J. 2009, 28: 8-20.
    Article CAS PubMed PubMed Central Google Scholar
  165. Lara PC, Lloret M, Clavo B, Apolinario RM, Henríquez-Hernández LA, Bordón E, Fontes F, Rey A: Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression. Radiat Oncol. 2009, 4: 29-
    Article PubMed PubMed Central CAS Google Scholar
  166. Elloul S, Vaksman O, Stavnes HT, Trope CG, Davidson B, Reich R: Mesenchymal-to-epithelial transition determinants as characteristics of ovarian carcinoma effusions. Clin Exp Metastasis. 2010, 27: 161-172.
    Article CAS PubMed Google Scholar
  167. Pistollato F, Abbadi S, Rampazzo E, Persano L, Della Puppa A, Frasson C, Sarto E, Scienza R, D’avella D, Basso G: Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells. 2010, 28: 851-862.
    Article CAS PubMed Google Scholar
  168. Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL, Meijer GA, van de Wiel MA, Belien JA, van Diest PJ, van der Wall E: Upregulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol. 2005, 206 (3): 291-304.
    Article CAS PubMed Google Scholar
  169. Levine AJ, Puzio-Kuter AM: The control of themetabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010, 3 (330(6009)): 1340-4.
    Article CAS Google Scholar
  170. DeBerardinis RJ: Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med. 2008, 10: 767-777.
    Article CAS PubMed PubMed Central Google Scholar
  171. Smith LM, Nesterova A, Ryan MC, Duniho S, Jonas M, Anderson M, Zabinski RF, Sutherland MK, Gerber HP, Van Orden KL, Moore PA, Ruben SM, Carter PJ: CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer. 2008, 99: 100-109.
    Article CAS PubMed PubMed Central Google Scholar
  172. Orian-Rousseau V: CD44, a therapeutic target for metastasizing tumours. Eur J Cancer. 2010, 46: 1271-7.
    Article CAS PubMed Google Scholar
  173. De Stefano I, Battaglia A, Zannoni GF, Prisco MG, Fattorossi A, Travaglia D, Baroni S, Renier D, Scambia G, Ferlini C, Gallo D: Hyaluronic acid-paclitaxel: effects of intraperitoneal administration against CD44(+) human ovarian cancer xenografts. Cancer Chemother Pharmacol. 2011, 68 (1): 107-16.
    Article PubMed CAS Google Scholar
  174. Bretz NP, Salnikov AV, Perne C, Keller S, Wang X, Mierke CT, Fogel M, Erbe-Hofmann N, Schlange T, Moldenhauer G, Altevogt P: CD24 controls Src/STAT3 activity in human tumors. Cell Mol Life Sci. 2012, 69 (22): 3863-3879.
    Article CAS PubMed Google Scholar
  175. Su D, Deng H, Zhao X, Zhang X, Chen L, Chen X, Li Z, Bai Y, Wang Y, Zhong Q, Yi T, Qian Z, Wei Y: Targeting CD24 for treatment of ovarian cancer by short hairpin RNA. Cytotherapy. 2009, 11 (5): 642-652.
    Article CAS PubMed Google Scholar
  176. Schilder RJ, Sill MW, Lee RB, Shaw TJ, Senterman MK, Klein-Szanto AJ, Miner Z, Vanderhyden BC: Phase II evaluation of imatinib mesylate in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a gynecologic oncology group study. J Clin Oncol. 2008, 26 (20): 3418-3425.
    Article CAS PubMed Google Scholar
  177. Patel BB, He YA, Li XM, Frolov A, Vanderveer L, Slater C, Schilder RJ, von Mehren M, Godwin AK, Yeung AT: Molecular mechanisms of action of imatinib mesylate in human ovarian cancer: a proteomic analysis. Cancer Genomics Proteomics. 2008, 5: 137-150.
    CAS PubMed Google Scholar
  178. Sebastian M, Kuemmel A, Schmidt M, Schmittel A: Catumaxomab: a bispecific trifunctional antibody. Drugs of Today. 2009, 45 (8): 589-597.
    Article CAS PubMed Google Scholar
  179. Seimetz D, Lindhofer H, Bokemeyer C: Development and approval of the trifunctional antibody catumaxomab (anti- EpCAM × anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev. 2010, 36 (6): 458-467.
    Article CAS PubMed Google Scholar
  180. Marchitti SA, Brocker C, Stagos D, Vasiliou V: Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 2008, 4 (6): 697-720.
    Article CAS PubMed PubMed Central Google Scholar
  181. Liu P, Brown S, Goktug T, Channathodiyil P, Kannappan V, Hugnot JP, Guichet PO, Bian X, Armesilla AL, Darling JL, Wang W: Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH positive cancer-stem-like cells. Br J Cancer. 2010, 107 (9): 1488-1497.
    Article CAS Google Scholar
  182. Soignet SL, Benedetti F, Fleischauer A, Parker BA, Truglia JA, Ra Crisp M, Warrell RP: Clinical study of 9-cis retinoic acid (LGD1057) in acute promyelocytic leukemia. Leukemia. 1998, 12 (10): 1518-1521.
    Article CAS PubMed Google Scholar
  183. Sell S: Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol. 2004, 51 (1): 1-28.
    Article PubMed Google Scholar
  184. Lim YC, Kang HJ, Kim YS, Choi EC: All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression ofWnt/beta-catenin pathway. Eur J Cancer. 2012, 48 (17): 3310-3318.
    Article CAS PubMed Google Scholar
  185. Whitworth JM, Londoño-Joshi AI, Sellers JC, Oliver PJ, Muccio DD, Atigadda VR, Straughn JM, Buchsbaum DJ: The impact of novel retinoids in combination with platinum chemotherapy on ovarian cancer stem cells. Gynecol Oncol. 2012, 125 (1): 226-230.
    Article CAS PubMed PubMed Central Google Scholar
  186. Ruiz-Vela A, Aguilar-Gallardo C, Martínez-Arroyo AM, Soriano-Navarro M, Ruiz V, Simón C: Specific unsaturated fatty acids enforce the transdifferentiation of human cancer cells toward adipocyte-like cells. Stem Cell Rev. 2011, 7 (4): 898-909.
    Article CAS PubMed Google Scholar
  187. Yin G, Alvero AB, Craveiro V, Holmberg JC, Fu HH, Montagna MK, Yang Y, Chefetz-Menaker I, Nuti S, Rossi M, Silasi DA, Rutherford T, Mor G: Constitutive proteasomal degradation of TWIST-1 in epithelial-ovarian cancer stem cells impacts differentiation and metastatic potential. Oncogene. 2013, 32: 39-49.
    Article CAS PubMed PubMed Central Google Scholar
  188. Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, Kyba M, Barton MC: p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol. 2012, 10 (2): 1001268-
    Article CAS Google Scholar
  189. Yu Z, Li Y, Fan H, Liu Z, Pestell RG: miRNAs regulate stem cell self-renewal and differentiation. Frontiers in Genetics. 2012, 3: 191-195.
    Article CAS PubMed PubMed Central Google Scholar
  190. Davis ME, Chen ZG, Shin DM: Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008, 7 (9): 771-782.
    Article CAS PubMed Google Scholar
  191. Chen ZG: Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med. 2010, 16 (12): 594-602.
    Article CAS PubMed Google Scholar
  192. Ruiz-Vela A, Aguilar-Gallardo C, Simón C: Building a framework for embryonic microenvironments and cancer stem cells. Stem Cell Reviews and Reports. 2010, 5 (4): 319-327.
    Article Google Scholar
  193. Li HJ, Reinhardt F, Herschman HR, Weinberg RA: Cancer stimulated mesenchymal stemcells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discovery. 2012, 2: 840-855.
    Article CAS PubMed Google Scholar
  194. Lis R, Touboul C, Raynaud CM, Malek JA, Suhre K, Mirshahi M, Rafii A: Mesenchymal cell interaction with ovarian cancer cells triggers pro-metastatic properties. PLoS One. 2012, 7 (5): 38340-
    Article CAS Google Scholar
  195. Katz E, Skorecki K, Tzukerman M: Niche-dependent tumorigenic capacity of malignant ovarian ascites-derived cancer ceil subpopulations. Clin Cancer Res. 2009, 15 (1): 70-80.
    Article CAS PubMed Google Scholar
  196. Liang D, Ma Y, Liu J, Trope CG, Holm R, Nesland JM, Suo Z: The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer. 2012, 12: 201-211.
    Article CAS PubMed PubMed Central Google Scholar
  197. La Barge MA: The difficulty of targeting cancer stem cell niches. Clin Cancer Res. 2010, 16 (12): 3121-3129.
    Article CAS Google Scholar
  198. Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136 (2): 215-233.
    Article CAS PubMed PubMed Central Google Scholar
  199. Lavon I, Zrihan D, Granit A, Einstein O, Fainstein N, Cohen MA, Cohen MA, Zelikovitch B, Shoshan Y, Spektor S, Reubinoff BE, Felig Y, Gerlitz O, Ben-Hur T, Smith Y, Siegal T: Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro Oncol. 2010, 12 (5): 422-433.
    CAS PubMed PubMed Central Google Scholar
  200. van Jaarsveld MTM, Helleman J, Berns EMJJ, Wiemer EAC: MicroRNAs in ovarian cancer biology and therapy resistance. Int J Biochem Cell Biol. 2010, 42 (8): 1282-1290.
    Article CAS PubMed Google Scholar
  201. Xu CX, Xu M, Tan L, Yang H, Permuth-Wey J, Kruk PA, Wenham RM, Nicosia SV, Lancaster JM, Sellers TA, Cheng JQ: MicroRNA MiR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. J Biol Chem. 2012, 287 (42): 34970-34978.
    Article CAS PubMed PubMed Central Google Scholar
  202. Cheng W, Liu T, Wan X, Gao Y, Wang H: MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 2012, 279 (11): 2047-2059.
    Article CAS PubMed Google Scholar
  203. Wu Q, Guo R, Lin M, Zhou B, Wang Y: MicroRNA- 200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting E-cadherin repressor ZEB2. Gynecol Oncol. 2011, 122 (1): 149-154.
    Article CAS PubMed Google Scholar
  204. Sarkar FH, Li Y, Wang Z, Kong D, Ali S: Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat. 2010, 13 (3): 57-66.
    Article CAS PubMed PubMed Central Google Scholar
  205. Zhong X, Li N, Liang S, Huang Q, Coukos G, Zhang L: Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J Biol Chem. 2010, 285 (53): 41961-41971.
    Article CAS PubMed PubMed Central Google Scholar
  206. Djordjevic B, Stojanovic S, Conic I, Jankovic-Velickovic L, Vukomanovic P, Zivadinovic R, Vukadinovic M: Current approach to epithelial ovarian cancer based on the concept of cancer stem cells. J BUON. 2012, 17 (4): 627-36.
    CAS PubMed Google Scholar
  207. Chefetz I, Alvero AB, Holmberg JC, Lebowitz N, Craveiro V, Yang-Hartwich Y, Yin G, Squillace L, Gurrea Soteras M, Aldo P, Mor G: TLR2 enhances ovarian cancer stem cell self-renewal and promotes tumor repair and recurrence. Cell Cycle. 2013, 12 (3): 511-21.
    Article CAS PubMed PubMed Central Google Scholar
  208. Kang KS, Choi YP, Gao MQ, Kang S, Kim BG, Lee JH, Kwon MJ, Shin YK, Cho NH: CD24(+) ovary cancer cells exhibit an invasive mesenchymal phenotype. Biochem Biophys Res Commun. 2013, 432 (2): 333-8.
    Article CAS PubMed Google Scholar

Download references