Lessons from yeast for clathrin-mediated endocytosis (original) (raw)
References
Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. J. Cell Biol.20, 313–332 (1964). CASPubMedPubMed Central Google Scholar
Crowther, R. A., Finch, J. T. & Pearse, B. M. On the structure of coated vesicles. J. Mol. Biol.103, 785–798 (1976). CASPubMed Google Scholar
Pearse, B. M. Coated vesicles from pig brain: purification and biochemical characterization. J. Mol. Biol.97, 93–98 (1975). CASPubMed Google Scholar
Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol.17, 517–568 (2001). CASPubMed Google Scholar
Raths, S., Rohrer, J., Crausaz, F. & Riezman, H. end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae. J. Cell Biol.120, 55–65 (1993). CASPubMed Google Scholar
Wendland, B., McCaffery, J. M., Xiao, Q. & Emr, S. D. A novel fluorescence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15. J. Cell Biol.135, 1485–1500 (1996). CASPubMed Google Scholar
Munn, A. L., Stevenson, B. J., Geli, M. I. & Riezman, H. end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae. Mol. Biol. Cell6, 1721–1742 (1995). CASPubMedPubMed Central Google Scholar
Kubler, E. & Riezman, H. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J.12, 2855–2862 (1993). CASPubMedPubMed Central Google Scholar
Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell115, 475–487 (2003). CASPubMed Google Scholar
Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell123, 305–320 (2005). ArticleCASPubMed Google Scholar
Newpher, T. M., Smith, R. P., Lemmon, V. & Lemmon, S. K. In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast. Dev. Cell9, 87–98 (2005). CASPubMed Google Scholar
Sirotkin, V., Berro, J., Macmillan, K., Zhao, L. & Pollard, T. D. Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Mol. Biol. Cell21, 2894–2904 (2010). CASPubMedPubMed Central Google Scholar
Idrissi, F. Z. et al. Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane. J. Cell Biol.180, 1219–1232 (2008). CASPubMedPubMed Central Google Scholar
Stefan, C. J., Audhya, A. & Emr, S. D. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4, 5)-bisphosphate. Mol. Biol. Cell13, 542–557 (2002). CASPubMedPubMed Central Google Scholar
Antonescu, C. N., Aguet, F., Danuser, G. & Schmid, S. L. Phosphatidylinositol-(4, 5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol. Biol. Cell22, 2588–2600 (2011). CASPubMedPubMed Central Google Scholar
Boettner, D. R. et al. The F-BAR protein Syp1 negatively regulates WASp-Arp2/3 complex activity during endocytic patch formation. Curr. Biol.19, 1979–1987 (2009). CASPubMedPubMed Central Google Scholar
Reider, A. et al. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J.28, 3103–3116 (2009). CASPubMedPubMed Central Google Scholar
Stimpson, H. E., Toret, C. P., Cheng, A. T., Pauly, B. S. & Drubin, D. G. Early-arriving Syp1p and Ede1p function in endocytic site placement and formation in budding yeast. Mol. Biol. Cell20, 4640–4651 (2009). CASPubMedPubMed Central Google Scholar
Toshima, J. Y. et al. Spatial dynamics of receptor-mediated endocytic trafficking in budding yeast revealed by using fluorescent alpha-factor derivatives. Proc. Natl Acad. Sci. USA103, 5793–5798 (2006). CASPubMedPubMed Central Google Scholar
Newpher, T. M. & Lemmon, S. K. Clathrin is important for normal actin dynamics and progression of Sla2p-containing patches during endocytosis in yeast. Traffic7, 574–588 (2006). CASPubMedPubMed Central Google Scholar
Toret, C. P., Lee, L., Sekiya-Kawasaki, M. & Drubin, D. G. Multiple pathways regulate endocytic coat disassembly in Saccharomyces cerevisiae for optimal downstream trafficking. Traffic9, 848–859 (2008). CASPubMed Google Scholar
Payne, G. S., Baker, D., van Tuinen, E. & Schekman, R. Protein transport to the vacuole and receptor-mediated endocytosis by clathrin heavy chain-deficient yeast. J. Cell Biol.106, 1453–1461 (1988). CASPubMed Google Scholar
Huang, K. M. et al. Novel functions of clathrin light chains: clathrin heavy chain trimerization is defective in light chain-deficient yeast. J. Cell Sci.110, 899–910 (1997). CASPubMed Google Scholar
Newpher, T. M., Idrissi, F. Z., Geli, M. I. & Lemmon, S. K. Novel function of clathrin light chain in promoting endocytic vesicle formation. Mol. Biol. Cell17, 4343–4352 (2006). CASPubMedPubMed Central Google Scholar
Gagny, B. et al. A novel EH domain protein of Saccharomyces cerevisiae, Ede1p, involved in endocytosis. J. Cell Sci.113, 3309–3319 (2000). CASPubMed Google Scholar
Dell'Angelica, E. C. Clathrin-binding proteins: got a motif? Join the network! Trends Cell Biol.11, 315–318 (2001). CASPubMed Google Scholar
Collette, J. R. et al. Clathrin functions in the absence of the terminal domain binding site for adaptor-associated clathrin-box motifs. Mol. Biol. Cell20, 3401–3413 (2009). CASPubMedPubMed Central Google Scholar
Kang, D. S. et al. Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking. J. Biol. Chem.284, 29860–29872 (2009). CASPubMedPubMed Central Google Scholar
Willox, A. K. & Royle, S. J. Functional analysis of interaction sites on the N-terminal domain of clathrin heavy chain. Traffic13, 70–81 (2011). PubMedPubMed Central Google Scholar
Carroll, S. Y. et al. A yeast killer toxin screen provides insights into a/b toxin entry, trafficking, and killing mechanisms. Dev. Cell17, 552–560 (2009). CASPubMedPubMed Central Google Scholar
Huang, K. M., D'Hondt, K., Riezman, H. & Lemmon, S. K. Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J.18, 3897–3908 (1999). CASPubMedPubMed Central Google Scholar
Yeung, B. G., Phan, H. L. & Payne, G. S. Adaptor complex-independent clathrin function in yeast. Mol. Biol. Cell10, 3643–3659 (1999). CASPubMedPubMed Central Google Scholar
Burston, H. E. et al. Regulators of yeast endocytosis identified by systematic quantitative analysis. J. Cell Biol.185, 1097–1110 (2009). CASPubMedPubMed Central Google Scholar
Maldonado-Baez, L. et al. Interaction between Epsin/Yap180 adaptors and the scaffolds Ede1/Pan1 is required for endocytosis. Mol. Biol. Cell19, 2936–2948 (2008). CASPubMedPubMed Central Google Scholar
Howard, J. P., Hutton, J. L., Olson, J. M. & Payne, G. S. Sla1p serves as the targeting signal recognition factor for NPFX(1, 2)D-mediated endocytosis. J. Cell Biol.157, 315–326 (2002). CASPubMedPubMed Central Google Scholar
Piao, H. L., Machado, I. M. & Payne, G. S. NPFXD-mediated endocytosis is required for polarity and function of a yeast cell wall stress sensor. Mol. Biol. Cell18, 57–65 (2007). CASPubMedPubMed Central Google Scholar
Di Pietro, S. M., Cascio, D., Feliciano, D., Bowie, J. U. & Payne, G. S. Regulation of clathrin adaptor function in endocytosis: novel role for the SAM domain. EMBO J.29, 1033–1044 (2010). CASPubMedPubMed Central Google Scholar
Shih, S. C. et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat. Cell Biol.4, 389–393 (2002). CASPubMed Google Scholar
Dores, M. R., Schnell, J. D., Maldonado-Baez, L., Wendland, B. & Hicke, L. The function of yeast epsin and Ede1 ubiquitin-binding domains during receptor internalization. Traffic11, 151–160 (2010). CASPubMedPubMed Central Google Scholar
Moseley, J. B. & Goode, B. L. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol. Mol. Biol. Rev.70, 605–645 (2006). CASPubMedPubMed Central Google Scholar
Jonsdottir, G. A. & Li, R. Dynamics of yeast Myosin I: evidence for a possible role in scission of endocytic vesicles. Curr. Biol.14, 1604–1609 (2004). CASPubMed Google Scholar
Sun, Y., Martin, A. C. & Drubin, D. G. Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev. Cell11, 33–46 (2006). CASPubMed Google Scholar
Sirotkin, V., Beltzner, C. C., Marchand, J. B. & Pollard, T. D. Interactions of WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch assembly in fission yeast. J. Cell Biol.170, 637–648 (2005). CASPubMedPubMed Central Google Scholar
Toshima, J. et al. Negative regulation of yeast Eps15-like Arp2/3 complex activator, Pan1p, by the Hip1R-related protein, Sla2p, during endocytosis. Mol. Biol. Cell18, 658–668 (2007). CASPubMedPubMed Central Google Scholar
Rodal, A. A., Manning, A. L., Goode, B. L. & Drubin, D. G. Negative regulation of yeast WASp by two SH3 domain-containing proteins. Curr. Biol.13, 1000–1008 (2003). CASPubMed Google Scholar
Soulard, A. et al. The WASP/Las17p-interacting protein Bzz1p functions with Myo5p in an early stage of endocytosis. Protoplasma226, 89–101 (2005). CASPubMed Google Scholar
Grotsch, H. et al. Calmodulin dissociation regulates Myo5 recruitment and function at endocytic sites. EMBO J.29, 2899–2914 (2010). PubMedPubMed Central Google Scholar
Galletta, B. J., Chuang, D. Y. & Cooper, J. A. Distinct roles for Arp2/3 regulators in actin assembly and endocytosis. PLoS Biol.6, e1 (2008). PubMedPubMed Central Google Scholar
Merrifield, C. J., Qualmann, B., Kessels, M. M. & Almers, W. Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol.83, 13–18 (2004). CASPubMed Google Scholar
Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell121, 593–606 (2005). CASPubMed Google Scholar
Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol.9, e1000604 (2011). CASPubMedPubMed Central Google Scholar
Dharmalingam, E. et al. F-BAR proteins of the syndapin family shape the plasma membrane and are crucial for neuromorphogenesis. J. Neurosci.29, 13315–13327 (2009). CASPubMedPubMed Central Google Scholar
Kessels, M. M. & Qualmann, B. Syndapin oligomers interconnect the machineries for endocytic vesicle formation and actin polymerization. J. Biol. Chem.281, 13285–13299 (2006). CASPubMed Google Scholar
Koch, D. et al. Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. EMBO J.http://dx.doi.org/10.1038/emboj.2011.339 (2011).
Rocca, D. L., Martin, S., Jenkins, E. L. & Hanley, J. G. Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nat. Cell Biol.10, 259–271 (2008). CASPubMedPubMed Central Google Scholar
Engqvist-Goldstein, A. E., Kessels, M. M., Chopra, V. S., Hayden, M. R. & Drubin, D. G. An actin-binding protein of the Sla2/Huntingtin interacting protein 1 family is a novel component of clathrin-coated pits and vesicles. J. Cell Biol.147, 1503–1518 (1999). CASPubMedPubMed Central Google Scholar
Wesp, A. et al. End4p/Sla2p interacts with actin-associated proteins for endocytosis in Saccharomyces cerevisiae. Mol. Biol. Cell8, 2291–2306 (1997). CASPubMedPubMed Central Google Scholar
Yang, S., Cope, M. J. & Drubin, D. G. Sla2p is associated with the yeast cortical actin cytoskeleton via redundant localization signals. Mol. Biol. Cell10, 2265–2283 (1999). CASPubMedPubMed Central Google Scholar
Engqvist-Goldstein, A. E. et al. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell15, 1666–1679 (2004). CASPubMedPubMed Central Google Scholar
Sun, Y., Carroll, S., Kaksonen, M., Toshima, J. Y. & Drubin, D. G. PtdIns(4, 5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization. J. Cell Biol.177, 355–367 (2007). CASPubMedPubMed Central Google Scholar
Sun, Y., Kaksonen, M., Madden, D. T., Schekman, R. & Drubin, D. G. Interaction of Sla2p's ANTH domain with PtdIns(4, 5)P2 is important for actin-dependent endocytic internalization. Mol. Biol. Cell16, 717–730 (2005). CASPubMedPubMed Central Google Scholar
Gourlay, C. W. et al. An interaction between Sla1p and Sla2p plays a role in regulating actin dynamics and endocytosis in budding yeast. J. Cell Sci.116, 2551–2564 (2003). CASPubMed Google Scholar
Brett, T. J., Legendre-Guillemin, V., McPherson, P. S. & Fremont, D. H. Structural definition of the F-actin-binding THATCH domain from HIP1R. Nat. Struct. Mol. Biol.13, 121–130 (2006). CASPubMed Google Scholar
McCann, R. O. & Craig, S. W. The I/LWEQ module: a conserved sequence that signifies F-actin binding in functionally diverse proteins from yeast to mammals. Proc. Natl Acad. Sci. USA94, 5679–5684 (1997). CASPubMedPubMed Central Google Scholar
Wilbur, J. D. et al. Actin binding by Hip1 (huntingtin-interacting protein 1) and Hip1R (Hip1-related protein) is regulated by clathrin light chain. J. Biol. Chem.283, 32870–32879 (2008). CASPubMedPubMed Central Google Scholar
Engqvist-Goldstein, A. E. et al. The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J. Cell Biol.154, 1209–1223 (2001). CASPubMedPubMed Central Google Scholar
Boettner, D. R., Friesen, H., Andrews, B. & Lemmon, S. K. Clathrin light chain directs endocytosis by influencing the binding of the yeast Hip1R homologue, Sla2, to F-actin. Mol. Biol. Cell22, 3699–3714 (2011). CASPubMedPubMed Central Google Scholar
Baggett, J. J., D'Aquino, K. E. & Wendland, B. The Sla2p talin domain plays a role in endocytosis in Saccharomyces cerevisiae. Genetics165, 1661–1674 (2003). CASPubMedPubMed Central Google Scholar
Smaczynska-de, R., II. et al. A role for the dynamin-like protein Vps1 during endocytosis in yeast. J. Cell Sci.123, 3496–3506 (2010). Google Scholar
Youn, J. Y. et al. Dissecting BAR domain function in the yeast Amphiphysins Rvs161 and Rvs167 during endocytosis. Mol. Biol. Cell21, 3054–3069 (2010). CASPubMedPubMed Central Google Scholar
Sever, S., Damke, H. & Schmid, S. L. Dynamin:GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J. Cell Biol.150, 1137–1148 (2000). CASPubMedPubMed Central Google Scholar
Nothwehr, S. F., Conibear, E. & Stevens, T. H. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane. J. Cell Biol.129, 35–46 (1995). CASPubMed Google Scholar
Nannapaneni, S. et al. The yeast dynamin-like protein Vps1:vps1 mutations perturb the internalization and the motility of endocytic vesicles and endosomes via disorganization of the actin cytoskeleton. Eur. J. Cell Biol.89, 499–508 (2010). CASPubMed Google Scholar
Liu, J., Sun, Y., Drubin, D. G. & Oster, G. F. The mechanochemistry of endocytosis. PLoS Biol.7, e1000204 (2009). PubMedPubMed Central Google Scholar
Liu, J., Kaksonen, M., Drubin, D. G. & Oster, G. Endocytic vesicle scission by lipid phase boundary forces. Proc. Natl Acad. Sci. USA103, 10277–10282 (2006). CASPubMedPubMed Central Google Scholar
Stefan, C. J., Padilla, S. M., Audhya, A. & Emr, S. D. The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis. Mol. Cell Biol.25, 2910–2923 (2005). CASPubMedPubMed Central Google Scholar
Singer-Kruger, B., Nemoto, Y., Daniell, L., Ferro-Novick, S. & De Camilli, P. Synaptojanin family members are implicated in endocytic membrane traffic in yeast. J. Cell Sci.111, 3347–3356 (1998). CASPubMed Google Scholar
Arasada, R. & Pollard, T. D. Distinct roles for F-BAR proteins Cdc15p and Bzz1p in actin polymerization at sites of endocytosis in fission yeast. Curr. Biol.21, 1450–1459 (2011). CASPubMedPubMed Central Google Scholar
Kishimoto, T., Sun, Y., Buser, C., Liu, J., Michelot, A., Drubin, D. G. Determinants of endocytic membrane geometry, stability, and scission. Proc. Natl Acad. Sci. USA44, E979–E988 (2011). Google Scholar
Ferguson, S. M. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell17, 811–822 (2009). CASPubMedPubMed Central Google Scholar
Wu, M. et al. Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nat. Cell Biol.12, 902–908 (2010). CASPubMedPubMed Central Google Scholar
Yamada, H. et al. Dynamic interaction of amphiphysin with N-WASP regulates actin assembly. J. Biol. Chem.284, 34244–34256 (2009). CASPubMedPubMed Central Google Scholar
Cope, M. J., Yang, S., Shang, C. & Drubin, D. G. Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. J. Cell Biol.144, 1203–1218 (1999). CASPubMedPubMed Central Google Scholar
Smythe, E. & Ayscough, K. R. The Ark1/Prk1 family of protein kinases. Regulators of endocytosis and the actin skeleton. EMBO Rep.4, 246–251 (2003). CASPubMedPubMed Central Google Scholar
Zeng, G., Huang, B., Neo, S. P., Wang, J. & Cai, M. Scd5p mediates phosphoregulation of actin and endocytosis by the type 1 phosphatase Glc7p in yeast. Mol. Biol. Cell18, 4885–4898 (2007). CASPubMedPubMed Central Google Scholar
Jin, M. & Cai, M. A novel function of Arp2p in mediating Prk1p-specific regulation of actin and endocytosis in yeast. Mol. Biol. Cell19, 297–307 (2008). CASPubMedPubMed Central Google Scholar
Huang, B., Zeng, G., Ng, A. Y. & Cai, M. Identification of novel recognition motifs and regulatory targets for the yeast actin-regulating kinase Prk1p. Mol. Biol. Cell14, 4871–4884 (2003). CASPubMedPubMed Central Google Scholar
Watson, H. A., Cope, M. J., Groen, A. C., Drubin, D. G. & Wendland, B. In vivo role for actin-regulating kinases in endocytosis and yeast epsin phosphorylation. Mol. Biol. Cell12, 3668–3679 (2001). CASPubMedPubMed Central Google Scholar
Henry, K. R. et al. The actin-regulating kinase Prk1p negatively regulates Scd5p, a suppressor of clathrin deficiency, in actin organization and endocytosis. Curr. Biol.13, 1564–1569 (2003). CASPubMed Google Scholar
Zeng, G., Yu, X. & Cai, M. Regulation of yeast actin cytoskeleton-regulatory complex Pan1p/Sla1p/End3p by serine/threonine kinase Prk1p. Mol. Biol. Cell12, 3759–3772 (2001). CASPubMedPubMed Central Google Scholar
Zeng, G. & Cai, M. Regulation of the actin cytoskeleton organization in yeast by a novel serine/threonine kinase Prk1p. J. Cell Biol.144, 71–82 (1999). CASPubMedPubMed Central Google Scholar
Breitkreutz, A. et al. A global protein kinase and phosphatase interaction network in yeast. Science328, 1043–1046 (2010). CASPubMedPubMed Central Google Scholar
Sekiya-Kawasaki, M. et al. Dynamic phosphoregulation of the cortical actin cytoskeleton and endocytic machinery revealed by real-time chemical genetic analysis. J. Cell Biol.162, 765–772 (2003). CASPubMedPubMed Central Google Scholar
Chang, J. S., Henry, K., Geli, M. I. & Lemmon, S. K. Cortical recruitment and nuclear-cytoplasmic shuttling of Scd5p, a protein phosphatase-1-targeting protein involved in actin organization and endocytosis. Mol. Biol. Cell17, 251–262 (2006). CASPubMedPubMed Central Google Scholar
Toshima, J., Toshima, J. Y., Martin, A. C. & Drubin, D. G. Phosphoregulation of Arp2/3-dependent actin assembly during receptor-mediated endocytosis. Nat. Cell Biol.7, 246–254 (2005). CASPubMed Google Scholar
Chang, J. S., Henry, K., Wolf, B. L., Geli, M. & Lemmon, S. K. Protein phosphatase-1 binding to scd5p is important for regulation of actin organization and endocytosis in yeast. J. Biol. Chem.277, 48002–48008 (2002). CASPubMed Google Scholar
Henry, K. R. et al. Scd5p and clathrin function are important for cortical actin organization, endocytosis, and localization of sla2p in yeast. Mol. Biol. Cell13, 2607–2625 (2002). CASPubMedPubMed Central Google Scholar
Tonikian, R. et al. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol.7, e1000218 (2009). PubMedPubMed Central Google Scholar
Honing, S. et al. Phosphatidylinositol-(4, 5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell18, 519–531 (2005). PubMed Google Scholar
Jackson, L. P. et al. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell141, 1220–1229 (2010). CASPubMedPubMed Central Google Scholar
Ricotta, D., Conner, S. D., Schmid, S. L., von Figura, K. & Honing, S. Phosphorylation of the AP2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol.156, 791–795 (2002). CASPubMedPubMed Central Google Scholar
Greener, T., Zhao, X., Nojima, H., Eisenberg, E. & Greene, L. E. Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J. Biol. Chem.275, 1365–1370 (2000). CASPubMed Google Scholar
Lee, D. W., Wu, X., Eisenberg, E. & Greene, L. E. Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis. J. Cell Sci.119, 3502–3512 (2006). CASPubMed Google Scholar
Umeda, A., Meyerholz, A. & Ungewickell, E. Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. Eur. J. Cell Biol.79, 336–342 (2000). CASPubMed Google Scholar
Zhang, C. X. et al. Multiple roles for cyclin G-associated kinase in clathrin-mediated sorting events. Traffic6, 1103–1113 (2005). CASPubMed Google Scholar
Cousin, M. A., Tan, T. C. & Robinson, P. J. Protein phosphorylation is required for endocytosis in nerve terminals: potential role for the dephosphins dynamin I and synaptojanin, but not AP180 or amphiphysin. J. Neurochem.76, 105–116 (2001). CASPubMed Google Scholar
Lee, S. Y., Wenk, M. R., Kim, Y., Nairn, A. C. & De Camilli, P. Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc. Natl Acad. Sci. USA101, 546–551 (2004). CASPubMedPubMed Central Google Scholar
Slepnev, V. I., Ochoa, G. C., Butler, M. H., Grabs, D. & De Camilli, P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science281, 821–824 (1998). CASPubMed Google Scholar
Tan, T. C. et al. Cdk5 is essential for synaptic vesicle endocytosis. Nat. Cell Biol.5, 701–710 (2003). CASPubMed Google Scholar
Okreglak, V. & Drubin, D. G. Cofilin recruitment and function during actin-mediated endocytosis dictated by actin nucleotide state. J. Cell Biol.178, 1251–1264 (2007). CASPubMedPubMed Central Google Scholar
Lin, M. C., Galletta, B. J., Sept, D. & Cooper, J. A. Overlapping and distinct functions for cofilin, coronin and Aip1 in actin dynamics in vivo. J. Cell Sci.123, 1329–1342 (2010). CASPubMedPubMed Central Google Scholar
Bobkov, A. A. et al. Cooperative effects of cofilin (ADF) on actin structure suggest allosteric mechanism of cofilin function. J. Mol. Biol.356, 325–334 (2006). CASPubMed Google Scholar
McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell. Biol.138, 771–781 (1997). CASPubMedPubMed Central Google Scholar
Muhlrad, A. et al. Cofilin induced conformational changes in F-actin expose subdomain 2 to proteolysis. J. Mol. Biol.342, 1559–1567 (2004). CASPubMed Google Scholar
Balcer, H. I. et al. Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1. Curr. Biol.13, 2159–2169 (2003). CASPubMed Google Scholar
Okada, K., Ravi, H., Smith, E. M. & Goode, B. L. Aip1 and cofilin promote rapid turnover of yeast actin patches and cables: a coordinated mechanism for severing and capping filaments. Mol. Biol. Cell17, 2855–2868 (2006). CASPubMedPubMed Central Google Scholar
Bertling, E., Quintero-Monzon, O., Mattila, P. K., Goode, B. L. & Lappalainen, P. Mechanism and biological role of profilin-Srv2/CAP interaction. J. Cell Sci.120, 1225–1234 (2007). CASPubMed Google Scholar
Quintero-Monzon, O. et al. Reconstitution and dissection of the 600-kDa Srv2/CAP complex: roles for oligomerization and cofilin-actin binding in driving actin turnover. J. Biol. Chem.284, 10923–10934 (2009). CASPubMedPubMed Central Google Scholar
Chaudhry, F., Little, K., Talarico, L., Quintero-Monzon, O. & Goode, B. L. A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover in vitro and in vivo. Cytoskeleton (Hoboken)67, 120–133 (2010). CAS Google Scholar
Gandhi, M. et al. GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr. Biol.20, 861–867 (2010). CASPubMedPubMed Central Google Scholar
Doyon, J. B. et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat. Cell Biol.13, 331–337 (2011). CASPubMedPubMed Central Google Scholar
Batchelder, E. M. & Yarar, D. Differential requirements for clathrin-dependent endocytosis at sites of cell-substrate adhesion. Mol. Biol. Cell21, 3070–3079 (2010). CASPubMedPubMed Central Google Scholar
Collins, A., Warrington, A., Taylor, K. A. & Svitkina, T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol.21, 1167–1175 (2011). CASPubMedPubMed Central Google Scholar
Cureton, D. K., Massol, R. H., Saffarian, S., Kirchhausen, T. L. & Whelan, S. P. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog.5, e1000394 (2009). PubMedPubMed Central Google Scholar
Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol.7, e1000191 (2009). PubMedPubMed Central Google Scholar
Boulant, S., Kural, C., Zeeh, J. C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol.13, 1124–1131 (2011). CASPubMedPubMed Central Google Scholar
Liu, A. P., Loerke, D., Schmid, S. L. & Danuser, G. Global and local regulation of clathrin-coated pit dynamics detected on patterned substrates. Biophys. J.97, 1038–1047 (2009). CASPubMedPubMed Central Google Scholar
Hohmann, S., Krantz, M. & Nordlander, B. Yeast osmoregulation. Methods Enzymol.428, 29–45 (2007). CASPubMed Google Scholar
Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nat. Cell Biol.11, 1039–1042 (2009). CASPubMed Google Scholar
Prosser, D. C., Drivas, T. G., Maldonado-Báez, L., Wendland, B. Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin. J. Cell Biol.195, 657–671 (2011). CASPubMedPubMed Central Google Scholar