c-v2x Research Papers - Academia.edu (original) (raw)

Non-terrestrial network (NTN) systems can offer wide area coverage for applications requiring high mobility, which is expected in the sixth generation (6G) of telecommunication systems. This paper proposes a high-mobility support system... more

Non-terrestrial network (NTN) systems can offer wide area coverage for applications requiring high mobility, which is expected in the sixth generation (6G) of telecommunication systems. This paper proposes a high-mobility support system based on the 5G-NR physical layer components for NTN connectivity. In this paper, we propose the optimization of 5G-NR numerologies and the impact of various modulation and coding schemes (MCS), 3GPP NR-NTN channel models, and MIMO/beamforming schemes with link-level simulation under pilot-aided-based perfect and DM-RS-based practical channel estimation at stationary UE and high mobility of 500 km/h, respectively. This paper also develops a link-level simulation of the 5G-NR physical downlink shared channel (PDSCH) under the 3GPP NR-NTN tapped delay line (TDL) channel model to support UE mobility up to 500 km/h. The bit error rate (BER), maximum achievable throughput (Mbps), and spectral efficiency (bps/Hz) are analyzed for the 5G-NR-based potential ...

Cellular vehicle-to-everything (C-V2X) communications will play a pivotal role in the realization of connected and cooperative autonomous driving. Applications such as vehicle platooning benefit from sidelink communications to fulfill... more

Cellular vehicle-to-everything (C-V2X) communications will play a pivotal role in the realization of connected and cooperative autonomous driving. Applications such as vehicle platooning benefit from sidelink communications to fulfill stringent latency requirements at the cost of uncertainty in the reliability due to the multiple access interference. In this paper, we propose an analytical framework to model the performance of C-V2X sidelink communications in a vehicle platooning scenario, depending on the available resources, the number of interfering vehicles and their relative positions. A Nakagami-Lognormal composite channel model is assumed, and the moment matching approximation (MMA) is used to approximate the statistics of the signal-to-interference-plus-noise ratio (SINR). Compared to existing simulation studies in the literature, the proposed model offers a compact, yet accurate, approximation of the achievable performance in terms of packet success rate, and allows for planning and adapting the configuration and parameters setup of the vehicle platoon. Index Terms-Cellular V2X, analytical model, vehicular communications, multiple access interference, platooning.

Non-terrestrial network (NTN) systems can offer wide area coverage for applications requiring high mobility, which is expected in the sixth generation (6G) of telecommunication systems. This paper proposes a high-mobility support system... more

Non-terrestrial network (NTN) systems can offer wide area coverage for applications requiring high mobility, which is expected in the sixth generation (6G) of telecommunication systems. This paper proposes a high-mobility support system based on the 5G-NR physical layer components for NTN connectivity. In this paper, we propose the optimization of 5G-NR numerologies and the impact of various modulation and coding schemes (MCS), 3GPP NR-NTN channel models, and MIMO/beamforming schemes with link-level simulation under pilot-aided-based perfect and DM-RS-based practical channel estimation at stationary UE and high mobility of 500 km/h, respectively. This paper also develops a link-level simulation of the 5G-NR physical downlink shared channel (PDSCH) under the 3GPP NR-NTN tapped delay line (TDL) channel model to support UE mobility up to 500 km/h. The bit error rate (BER), maximum achievable throughput (Mbps), and spectral efficiency (bps/Hz) are analyzed for the 5G-NR-based potential ...

Vehicular Ad Hoc Networks (VANETs) is an important field of study nowadays. VANETs attracts attention of vehicles communication researcher due to its potential to improve vehicle road safety, enhance traffic and travel efficiency, and... more

Vehicular Ad Hoc Networks (VANETs) is an important field of study nowadays. VANETs attracts attention of vehicles communication researcher due to its potential to improve vehicle road safety, enhance traffic and travel efficiency, and provide convenience and comfort for passengers and drivers. Due to the fact that modern life, especially when travelling in vehicles, is in need for high throughput, this paper investigates the Block Error Rate (BLER) and throughput performance of vehicle-to-Infrastructure (V2I) communication between LTE node and vehicles in urban-low environment using two different stochastic channel model used urban-low areas because urban-low speed areas is the common road situation for a large number of users require connection with LTE node. Vehicle-to-Infrastructure - Urban (V2I-U) is used in urban areas and Vehicle-to-Infrastructure – Urban Small intersection (V2I-US) channel model, used as a reference model, has the largest maximum excess delay near to the 3GPP...

This paper develops a novel Machine Learning (ML)-based strategy to distribute aperiodic Cooperative Awareness Messages (CAMs) through cellular Vehicle-to-Vehicle (V2V) communications. According to it, an ML algorithm is employed by each... more

This paper develops a novel Machine Learning (ML)-based strategy to distribute aperiodic Cooperative Awareness Messages (CAMs) through cellular Vehicle-to-Vehicle (V2V) communications. According to it, an ML algorithm is employed by each vehicle to forecast its future CAM generation times; then, the vehicle autonomously selects the radio resources for message broadcasting on the basis of the forecast provided by the algorithm. This action is combined with a wise analysis of the radio resources available for transmission, that identifies subchannels where collisions might occur, to avoid selecting them.Extensive simulations show that the accuracy in the prediction of the CAMs’ temporal pattern is excellent. Exploiting this knowledge in the strategy for radio resource assignment, and carefully identifying idle resources, allows to outperform the legacy LTE-V2X Mode 4 in all respects.

The 5G mobile network brings several new features that can be applied to existing and new applications. High reliability, low latency, and high data rate are some of the features that fulfill the requirements of vehicular networks.... more

The 5G mobile network brings several new features that can be applied to existing and new applications. High reliability, low latency, and high data rate are some of the features that fulfill the requirements of vehicular networks. Vehicular networks aim to provide safety for road users and several additional advantages such as enhanced traffic efficiency and in-vehicle infotainment services. This article summarizes the most important aspects of NR-V2X, which is standardized by 3GPP, focusing on sidelink communication. The main part of this work belongs to 3GPP Release 16, which is the first 3GPP release for NR-V2X, and the work/study items of the future Release 17.

The continuous plan and institutionalization of the fifth generation (5G) new radio (NR) will empower new utilize cases and applications, forcing all the more difficult necessities as far as portability execution. For instance, 5G... more

The continuous plan and institutionalization of the fifth generation (5G) new radio (NR) will empower new utilize cases and applications, forcing all the more difficult necessities as far as portability execution. For instance, 5G portable systems should bolster consistent portability with zero information interference at every handover, even at high speeds. This thesis studies about the different techniques used for efficient image transmission over LTE network under different fading channels. By studying different techniques at each stage of image transmission, the intention is to find the optimum techniques which can enhance the implementation of image transmission over LTE system. Image segmentation is first stage in image transmission, in which the image is broken into segments. The second stage is encoding where different codes can be used. Interleaving is the third step where block interleave, chaotic inter-leaver are used. The fourth step is modulation where the interleaved ...

This article explores the recent 3GPP LTE D2D rel. 14 Radio Resource Management specification to identify the challenges and evaluate the potentials of Unsupervised LTE D2D (mode 2) for Safety-critical V2X Communications. It also proposes... more

This article explores the recent 3GPP LTE D2D rel. 14 Radio Resource Management specification to identify the challenges and evaluate the potentials of Unsupervised LTE D2D (mode 2) for Safety-critical V2X Communications. It also proposes two distributed resource allocation strategies for unlicensed band access. Complementary to DSRC/ITS-G5, unsupervised LTE D2D is an opportunity to provide redundancy for ultrareliable systems, such as safety-critical V2X communications.

The 5G mobile network brings several new features that can be applied to existing and new applications. High reliability, low latency, and high data rate are some of the features that fulfill the requirements of vehicular networks.... more

The 5G mobile network brings several new features that can be applied to existing and new applications. High reliability, low latency, and high data rate are some of the features that fulfill the requirements of vehicular networks. Vehicular networks aim to provide safety for road users and several additional advantages such as enhanced traffic efficiency and in-vehicle infotainment services. This article summarizes the most important aspects of NR-V2X, which is standardized by 3GPP, focusing on sidelink communication. The main part of this work belongs to 3GPP Release 16, which is the first 3GPP release for NR-V2X, and the work/study items of the future Release 17.

The revolution of cooperative connected and automated vehicles is about to begin and a key milestone is the introduction of short range wireless communications between cars. Given the tremendous expected market growth, two different... more

The revolution of cooperative connected and automated vehicles is about to begin and a key milestone is the introduction of short range wireless communications between cars. Given the tremendous expected market growth, two different technologies have been standardized by international companies and consortia, namely IEEE 802.11p, out for nearly a decade, and short range cellular-vehicle-to-anything (C-V2X), of recent definition. In both cases, evolutions are under discussion. The former is only decentralized and based on a sensing before transmitting access, while the latter is based on orthogonal resources that can be also managed by an infrastructure. Although studies have been conducted to highlight advantages and drawbacks of both, doubts still remain. In this work, with a reference to the literature and the aid of large scale simulations in realistic urban and highway scenarios, we provide an insight in such a comparison, also trying to isolate the contribution of the physical ...

The intelligent transport system (ITS) has become one of the most globally researched topics with a lot of investment and development resources being dedicated into it due to its foreseen impact on the economic growth of the transport... more

The intelligent transport system (ITS) has become one of the most globally researched topics with a lot of investment and development resources being dedicated into it due to its foreseen impact on the economic growth of the transport sector. Currently there are two main vehicle-to-everything (V2X) technologies, whose primary application is focused on ITS, backed up by the key players of various automotive, telecommunication and transport industries: dedicated short-range communications (DSRC) and cellular vehicle-to-everything (C-V2X), respectively based on IEEE 802.11p and 3GPP LTE/5G NR. While DSRC already has deployments, C-V2X is expected to see larger scale trails and deployments in 2020. In this work, the authors provide insight and review into two main V2X technologies, DSRC and C-V2X, their core parameters, shortcomings and limitations, and explore the need for integration of IoT-based technologies into modern ITS solutions. A comprehensive overview and analysis of currentl...

The Third Generation Partnership Project (3GPP) has recently published its Release 16 that includes the first Vehicle-to-Everything (V2X) standard based on the 5G New Radio (NR) air interface. 5G NR V2X introduces advanced functionalities... more

The Third Generation Partnership Project (3GPP) has recently published its Release 16 that includes the first Vehicle-to-Everything (V2X) standard based on the 5G New Radio (NR) air interface. 5G NR V2X introduces advanced functionalities on top of the 5G NR air interface to support connected and automated driving use cases with stringent requirements. This article presents an in-depth tutorial of the 3GPP Release 16 5G NR V2X standard for V2X communications, with a particular focus on the sidelink, since it is the most significant part of 5G NR V2X. The main part of the paper is an in-depth treatment of the key aspects of 5G NR V2X: the physical layer, the resource allocation, the quality of service management, the enhancements introduced to the Uu interface and the mobility management for V2N (Vehicle to Network) communications, as well as the coexistence mechanisms between 5G NR V2X and LTE V2X. We also review the use cases, the system architecture, and describe the evaluation methodology and simulation assumptions for 5G NR V2X. Finally, we provide an outlook on possible 5G NR V2X enhancements, including those identified within Release 17.

Vehicular Ad Hoc Networks (VANETs) is an important field of study nowadays. VANETs attracts attention of vehicles communication researcher due to its potential to improve vehicle road safety, enhance traffic and travel efficiency, and... more

Vehicular Ad Hoc Networks (VANETs) is an important field of study nowadays. VANETs attracts attention of vehicles communication researcher due to its potential to improve vehicle road safety, enhance traffic and travel efficiency, and provide convenience and comfort for passengers and drivers. Due to the fact that modern life, especially when travelling in vehicles, is in need for high throughput, this paper investigates the Block Error Rate (BLER) and throughput performance of vehicle-to-Infrastructure (V2I) communication between LTE node and vehicles in urban-low environment using two different stochastic channel model used urban-low areas because urban-low speed areas is the common road situation for a large number of users require connection with LTE node. Vehicle-to-Infrastructure - Urban (V2I-U) is used in urban areas and Vehicle-to-Infrastructure – Urban Small intersection (V2I-US) channel model, used as a reference model, has the largest maximum excess delay near to the 3GPP...

5G and beyond networks are being designed to support the future digital society, where numerous sensors, machinery, vehicles and humans will be connected in the so-called Internet of Things (IoT). The support of time-critical verticals... more

5G and beyond networks are being designed to support the future digital society, where numerous sensors, machinery, vehicles and humans will be connected in the so-called Internet of Things (IoT). The support of time-critical verticals such as Industry 4.0 will be especially challenging, due to the demanding communication requirements of manufacturing applications such as motion control, control-to-control applications and factory automation, which will require the exchange of critical sensing and control information among the factory nodes. To this aim, important changes have been introduced in 5G for Ultra-Reliable and Low-Latency Communications (URLLC). One of these changes is the introduction of grant-free scheduling for uplink transmissions. The objective is to reduce latency by eliminating the need for User Equipments (UEs-sensors, devices or machinery) to request resources and wait until the network grants them. Grant-free scheduling can reserve radio resources for dedicated UEs or for groups of UEs. The latter option is particularly relevant to support applications with aperiodic or sporadic traffic and deterministic low latency requirements. In this case, when a UE has information to transmit, it must contend for the usage of radio resources. This can lead to potential packet collisions between UEs. 5G introduces the possibility of transmitting K replicas of the same packet to combat such collisions. Previous studies have shown that grant-free scheduling with K replicas and shared resources increases the packet delivery. However, relying upon the transmission of K replicas to achieve a target reliability level can result in additional delays, and it is yet unknown whether grant-free scheduling with K replicas and shared resources can guarantee very high reliability levels with very low latency. This is the objective of this study, that identifies the reliability and latency levels that can be achieved by 5G grant-free scheduling with K replicas and shared resources in the presence of aperiodic traffic, and as a function of the number of UEs, reserved radio resources and replicas K. The study demonstrates that current Fifth Generation New Radio (5G NR) grant-free scheduling has limitations to sustain stringent reliability and latency levels for aperiodic traffic.

With the rising interest in autonomous vehicles, developing radio access technologies (RATs) that enable reliable and low latency vehicular communications has become of paramount importance. Dedicated Short Range Communications (DSRC) and... more

With the rising interest in autonomous vehicles, developing radio access technologies (RATs) that enable reliable and low latency vehicular communications has become of paramount importance. Dedicated Short Range Communications (DSRC) and Cellular V2X (C-V2X) are two present-day technologies that are capable of supporting day-1 vehicular applications. However, these RATs fall short of supporting communication requirements of many advanced vehicular applications, which are believed to be critical in enabling fully autonomous vehicles. Both DSRC and C-V2X are undergoing extensive enhancements in order to support advanced vehicular applications that are characterized by high reliability, low latency, and high throughput requirements. These RAT evolutions-IEEE 802.11bd for DSRC and NR V2X for C-V2X-can supplement today's vehicular sensors in enabling autonomous driving. In this paper, we survey the latest developments in the standardization of 802.11bd and NR V2X. We begin with a brief description of the two present-day vehicular RATs. In doing so, we highlight their inability to guarantee the quality of service requirements of many advanced vehicular applications. We then look at the two RAT evolutions, i.e., IEEE 802.11bd and NR V2X and outline their objectives, describe their salient features and provide an in-depth description of key mechanisms that enable these features. While both, IEEE 802.11bd and NR V2X, are in their initial stages of development, we shed light on their preliminary performance projections and compare and contrast the two evolutionary RATs with their respective predecessors.