Число Эйлера | это... Что такое Число Эйлера? (original) (raw)
e — математическая константа, основание натурального логарифма, иррациональное и трансцендентное число. Иногда число e называют числом Эйлера (не путать с т. н. числами Эйлера I рода) или числом Непера. Обозначается строчной латинской буквой «e».
Играет важную роль в дифференциальном и интегральном исчислении, а также многих других разделах математики.
2,718 281 828 459 045 235 360 287 471 352 662 497 757…[1]
Содержание
- 1 Способы определения
- 2 Свойства
- 3 История
- 4 Способы запоминания
- 5 Доказательство иррациональности
- 6 Интересные факты
- 7 Примечания
- 8 См. также
- 9 Ссылки
Способы определения
Число e может быть определено несколькими способами.
Свойства
Данное свойство играет важную роль в решении дифференциальных уравнений. Так, например, единственным решением дифференциального уравнения является функция , где c — произвольная константа.- Число e иррационально и даже трансцендентно. Это первое число, которое не было выведено как трансцендентное специально, его трансцендентность была доказана только в 1873 году Шарлем Эрмитом. Предполагается, что e — нормальное число, то есть вероятность появления разных цифр в его записи одинакова.
- , см. формула Эйлера, в частности
- Ещё одна формула, связывающая числа е и π, т. н. «интеграл Пуассона» или «интеграл Гаусса»
- Для любого комплексного числа z верны следующие равенства:
- Число e разлагается в бесконечную цепную дробь следующим образом:
, то есть - Представление Каталана:
История
Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x был равен .
Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует (см.: Непер).
Предполагается, что автором таблицы был английский математик Отред.
Саму же константу впервые вычислил швейцарский математик Бернулли при анализе следующего предела:
Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 1690—1691 годы.
Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера. Хотя впоследствии некоторые учёные использовали букву c, буква e применялась чаще и в наши дни является стандартным обозначением.
Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a, b, c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии (нем. Euler).
Способы запоминания
- Для получения приблизительного значения нужно выписать подряд цифры, выражающие число букв в словах следующего стишка, и поставить запятую после первого знака: «Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли».
- Стишок:
Два и семь, восемнадцать,
Двадцать восемь, восемнадцать,
Двадцать восемь, сорок пять,
Девяносто, сорок пять.
- Легко запомнить как 2, далее запоминаем 71, потом повторяющиеся 82, 81, 82
- Число e можно запомнить по следующему мнемоническому правилу: два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45, 90 и 45 градусов). Стихотворная мнемофраза, иллюстрирующая часть этого правила: «Экспоненту помнить способ есть простой: две и семь десятых, дважды Лев Толстой»
- Цифры 45, 90 и 45 можно запоминать как «год победы над фашистской Германией, затем дважды этот год и снова он»
- В другом варианте правила e связывается с президентом США Эндрю Джексоном: 2 — столько раз избирался, 7 — он был седьмым президентом США, 1828 — год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем — опять-таки равнобедренный прямоугольный треугольник.
Доказательство иррациональности
Пускай рационально. Тогда , где и целые положительные, откуда
Умножая обе части уравнения на , получаем
Переносим в левую часть:
Все слагаемые правой части целые, следовательно:
- целое
Но с другой стороны
Получаем противоречие.
Интересные факты
- В IPO компании 2004 году было объявлено о намерении компании увеличить свою прибыль на 2 718 281 828 долларов. Заявленная цифра представляет собой первые 10 цифр известной математической константы.
- В языках программирования символу e в экспоненциальных записях числовых литералов соответствует число 10, а не Эйлерово число. Это связано с историей создания и использования языка для математических вычислений FORTRAN[2]:
Я начал программировать в 1960 году на FORTRAN II, используя компьютер IBM 1620. В то время, в 60-е и 70-е годы, FORTRAN использовал только заглавные буквы. Возможно, это произошло потому, что большинство старых устройств ввода были телетайпами, работавшими с 5-битовым кодом Бодо, который не поддерживал строчные буквы. Буква E в экспоненциальной записи тоже была заглавной и не смешивалась с основанием натурального логарифма e, которое всегда записывается маленькой буквой. Символ E просто выражал экспоненциальный характер, то есть обозначал основание системы — обычно таким было 10. В те годы программисты широко использовали восьмеричную систему. И хотя я не замечал такого, но если бы я увидел восьмеричное число в экспоненциальной форме, я бы предположил, что имеется в виду основание 8. Первый раз я встретился с использованием маленькой e в экспоненциальной записи в конце 70-х годов, и это было очень неудобно. Проблемы появились потом, когда строчные буквы по инерции перешли в FORTRAN. У нас существовали все нужные функции для действий с натуральными логарифмами, но все они записывались прописными буквами.
Таким образом, записи типа 7.38e-43
в языках программирования будет соответствовать число , а не .
Примечания
- ↑ 2 миллиона цифр после запятой
- ↑ Эккель Б. Философия Java = Thinking in Java. — 4-е изд. — СПб.: Питер, 2009. — С. 84. — (Библиотека программиста). — ISBN 978-5-388-00003-3
См. также
Ссылки
- История числа e (англ.)
- e for 2.71828… (история и правило Джексона, англ.)
- последовательность A001113 в OEIS
Числа с собственными именами | ||||||
---|---|---|---|---|---|---|
Вещественные | Золотое сечение | e (число Эйлера) | Пи | Число Скьюза | |||
Натуральные | Чёртова дюжина | Число зверя | Число Рамануджана — Харди | ||||
Степени десяти | Мириада | Гугол | Асанкхейя | Гуголплекс | |||
Степени тысячи | Тысяча | Миллион | Миллиард | Биллион | Триллион … | … Центиллион | Зиллион |
Степени двенадцати | Дюжина | Гросс | Масса | ||||
Литературные меры счёта | Доцанд | Мириад |
Wikimedia Foundation.2010.