Ротор (математика) | это... Что такое Ротор (математика)? (original) (raw)

У этого термина существуют и другие значения, см. Ротор.

Ро́тор, или вихрьвекторный дифференциальный оператор над векторным полем.

Обозначается

\operatorname{rot} (в русскоязычной[1] литературе) или

\operatorname{curl} (в англоязычной литературе),

а также - как векторное умножение дифференциального оператора набла на векторное поле:

\mathbf{\nabla} \times.

Результат действия этого оператора на конкретное векторное поле F называется ротором поля F или, короче, просто ротором F и представляет собой новое векторное[2] поле:

\operatorname{rot}\,\mathbf F\equiv\mathbf{\nabla} \times \mathbf{F}.

Поле rot F (длина и направление вектора rot F в каждой точке пространства) характеризует в некотором смысле[3] вращательную составляющую поля F соответственно в каждой точке.

Содержание

Интуитивный образ

Если v(x,y,z) - поле скорости движения газа (или течения жидкости), то rot v - вектор, пропорциональный вектору угловой скорости очень маленькой и лёгкой пылинки (или шарика), находящегося в потоке (и увлекаемого движением газа или жидкости; хотя центр шарика можно при желании закрепить, лишь бы он мог вокруг него свободно вращаться).

Конкретно rot v = 2 ω, где ω - эта угловая скорость.

Эта аналогия может быть сформулирована вполне строго (см. ниже). Основное определение через циркуляцию (данное в следующем параграфе) можно считать эквивалентным полученному таким образом.

Математическое определение

Ротор \operatorname{rot}\, \mathbf a векторного поля \mathbf a — есть вектор, проекция которого \operatorname{rot} _ \mathbf n \mathbf a на каждое направление n есть предел отношения циркуляции векторного поля по контуру L, являющемуся краем плоской площадки Δ_S_, перпендикулярной этому направлению, к величине этой площадки, когда размеры площадки стремятся к нулю, а сама площадка стягивается в точку:

\operatorname{rot} _ \mathbf n \mathbf a=\lim_{\Delta S\to 0}\frac{\oint\limits_{L}\mathbf{ a\cdot \, dr}}{\Delta S}.

Направление обхода контура выбирается так, чтобы, если смотреть в направлении \mathbf n, контур L обходился по часовой стрелке[4].

В трёхмерной декартовой системе координат ротор (в соответствии с определением выше) вычисляется следующим образом (здесь F - обозначено некое векторное поле с декартовыми компонентами F_x, F_y, F_z, а \mathbf e_x, \mathbf e_y, \mathbf e_z - орты декартовых координат):

\operatorname{rot}\;(F_x \mathbf e_x + F_y\, \mathbf e_y + F_z \mathbf e_z) =

=
\left( \partial_y F_z - \partial_z F_y \right) \mathbf e_x+
\left( \partial_z F_x - \partial_x F_z \right) \mathbf e_y+
\left( \partial_x F_y - \partial_y F_x \right) \mathbf e_z \equiv

\equiv \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right) \mathbf e_x+
\left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right) \mathbf e_y+
\left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) \mathbf e_z.

или

(\operatorname{rot}\;\mathbf F)_x = \partial_y F_z - \partial_z F_y \equiv
\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}

(\operatorname{rot}\;\mathbf F)_y = \partial_z F_x - \partial_x F_z \equiv 
\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}

(\operatorname{rot}\;\mathbf F)_z = \partial_x F_y - \partial_y F_x \equiv
\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}

(что можно считать альтернативным определением, по сути совпадающим с определением в начале параграфа, по крайней мере при условии дифференцируемости компонент поля).

Для удобства можно формально представлять ротор как векторное произведение оператора набла (слева) и векторного поля:

\operatorname{rot}\; \mathbf{F} = \mathbf{\nabla} \times \mathbf{F} = \begin{pmatrix}
\frac{\partial}{\partial x} \\  \\
\frac{\partial}{\partial y} \\  \\
\frac{\partial}{\partial z}
\end{pmatrix} \times \mathbf F = \begin{vmatrix} \mathbf{e}_x & \mathbf{e}_y & \mathbf{e}_z \\  \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
 \\  F_x & F_y & F_z \end{vmatrix}.

(Последнее равенство формально представляет векторное произведение как определитель).

Связанные определения

Векторное поле, ротор которого равен нулю в любой точке, называется безвихревым и является потенциальным. Поскольку эти условия являются друг для друга необходимыми и достаточными, оба термина являются практическими синонимами. (Впрочем, это верно только для случая полей, определённых на односвязной области).

Чуть подробнее о взаимной обусловленности потенциальности и безвихревого характера поля - см. ниже (Основные свойства).

Напротив, поле, ротор которого не равен нулю, называется обычно вихревым, такое поле не может быть потенциальным.

Обобщение

Наиболее прямое обобщение ротора применительно к векторным (и псевдовекторным) полям, определённым на пространствах произвольной размерности (при условии совпадения размерности пространства с размерностью вектора поля) такое

(\operatorname{rot}\;\mathbf F)_{12} =
\left(\frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2}\right)

(\operatorname{rot}\;\mathbf F)_{13} =
\left(\frac{\partial F_3}{\partial x_1} - \frac{\partial F_1}{\partial x_3}\right)

(\operatorname{rot}\;\mathbf F)_{23} =
\left(\frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3}\right)

...

или

(\operatorname{rot}\;\mathbf F)_{mn} = \partial_m F_n - \partial_n F_m \equiv
\frac{\partial F_n}{\partial x_m} - \frac{\partial F_m}{\partial x_n}

при индексах m и n от 1 до размерности пространства.

Это же может быть записано как внешнее произведение:

\operatorname{rot}\;\mathbf F = \nabla \wedge \mathbf F.

Физическая интерпретация

По теореме Коши-Гельмгольца распределение скоростей сплошной среды вблизи точки О задаётся уравнением

\mathbf{v}(\mathbf{r}) = \mathbf{v}_{O} + \mathbf{\omega} \times \mathbf{r} + \nabla\varphi + o(\mathbf{r}),

где \mathbf{\omega} — вектор углового вращения элемента среды в точке О, а \varphiквадратичная форма от координат — потенциал деформации элемента среды.

Таким образом, движение сплошной среды вблизи точки О складывается из поступательного движения (вектор \mathbf{v}_{O}), вращательного движения (вектор  \mathbf{\omega} \times \mathbf{r}) и потенциального движения — деформации (вектор \nabla\varphi). Применяя к формуле Коши—Гельмгольца операцию ротора, получим, что в точке О справедливо равенство \operatorname{rot} ~\mathbf{v} = 2\mathbf{\omega}, и, следовательно, можно заключить, что когда речь идет о векторном поле, являющемся полем скоростей некоторой среды, ротор этого векторного поля в заданной точке равен удвоенному вектору углового вращения элемента среды с центром в этой точке.

В качестве интуитивного образа, как это описано выше, здесь можно использовать представление о вращении брошенной в поток маленькой пылинки (увлекаемой потоком с собой, без его заметного возмущения) или о вращении помещённого в поток с закреплённой осью маленького (без инерции, вращаемого потоком, заметно не искажая его) колеса с прямыми (не винтовыми) лопастями. Если то или другое при взгляде на него вращается против часовой стрелки, то это означает, что вектор ротора поля скорости потока в данной точке имеет положительную проекцию в направлении на нас.

Основные свойства

Свойства, непосредственно получаемые из обычных правил дифференцирования

\operatorname{rot}\;( a\mathbf{F} + b\mathbf{G} ) = a\;\operatorname{rot} ~\mathbf{F} + b\;\operatorname{rot} ~\mathbf{G}

для любых векторных полей F и G и для любых постоянных чисел a и b.

![\operatorname{rot} ~\varphi \mathbf{F} = \operatorname{grad} ~\varphi ~\times \mathbf{F}

или

![\nabla\times(\varphi \mathbf{F}) = (\nabla\varphi) \times \mathbf{F}

\operatorname{div} ~\operatorname{rot} ~\mathbf{F} = 0 или \nabla \cdot (\nabla \times \mathbf{F}) = 0 .

При этом верно и обратное: если поле F бездивергентно, оно вихрь некоторого поля G (векторного потенциала):

\operatorname{div} ~\mathbf{F} = 0 \Rightarrow \mathbf{F} = \operatorname{rot} ~\mathbf{G}.

\mathbf{F} = \operatorname{grad}~\varphi \Rightarrow \operatorname{rot} ~\mathbf{F} = 0

Верно и обратное: если поле безвихревое, то оно потенциально:

\operatorname{rot} ~\mathbf{F} = 0 \Rightarrow \mathbf{F} = \operatorname{grad}~\varphi

для некоторого скалярного поля \varphi\ (то есть найдется такое \varphi\ , что F будет его градиентом).

\operatorname{rot} ~\operatorname{rot} ~\mathbf{F} = \operatorname{grad} ~\operatorname{div} ~\mathbf{F} - \Delta\mathbf{F}

Теорема Стокса

Циркуляция вектора по замкнутому контуру, являющемуся границей некоторой поверхности, равна потоку ротора этого вектора через эту поверхность:

\oint\limits_{\partial S}\mathbf{F} \cdot\,\mathbf{dl} = 
\int\limits_S (\operatorname{rot} ~\mathbf{F}) \cdot \,\mathbf{dS}

Частный случай теоремы Стокса для плоской поверхности - содержание теоремы Грина.

Альтернативные определения

Все определения ротора, о которых будет говориться в данном параграфе полностью эквивалентны (по крайней мере для случая дифференцируемого векторного поля), и в качестве основного, в принципе, можно выбрать любое из них. Остальные тогда оказываются формулами, которые могут быть более удобны в том или ином случае.

Прежде всего, перечислим явно те варианты, которые уже упоминались в статье выше и могут при желании каждое играть роль определения ротора.

Кроме них полезно упомянуть:

где g^{jm} - метрический тензор в представлении с верхними индексами. В последнем случае (общем) важно упомянуть, что под значком \varepsilon_{ijk} имеется в виду именно тензор, включая множитель \sqrt{g}.

\mathrm{rot}\ \mathbf a \Big|_{O}
= \lim_{S\rightarrow O}
\oint\limits_{S}
[\mathbf a \times \mathbf{dS}].

Ротор в криволинейных координатах

Общий случай

Удобным общим выражение ротора, пригодным для произвольных криволинейных координат в трехмерном[6] пространстве является выражение с использованием тензора Леви-Чивиты:

Используя верхние и нижние индексы и правило суммирования Эйнштейна:

(\mathrm{rot}\ \mathbf v)_i = \varepsilon_{ijk}g^{jm}\frac{\partial}{\partial x^m} v^k,

где \varepsilon_{ijk} - координатная запись тензора Леви-Чивиты, включая множитель \sqrt{g}, g^{jm} - метрический тензор в представлении с верхними индексами, g \equiv \mathrm{det} (g_{rs}).

Это выражение при желании может быть также переписано, например, в виде:

(\mathrm{rot}\ \mathbf v)^n = g^{ni}\varepsilon_{ijk}g^{jm}\frac{\partial}{\partial x^m} v^k,

итд.

В ортогональных криволинейных координатах

\operatorname{rot}\;\mathbf{A} = \operatorname{rot}\;(\mathbf{q_1}A_1 + \mathbf{q_2}A_2 + \mathbf{q_3}A_3) =

 = \frac{1}{H_2H_3}\left[\frac{\partial}{\partial q_2}(A_3H_3) - \frac{\partial}{\partial q_3}(A_2H_2)\right]\mathbf{q_1}\ +

 +\ \frac{1}{H_3H_1}\left[\frac{\partial}{\partial q_3}(A_1H_1) - \frac{\partial}{\partial q_1}(A_3H_3)\right]\mathbf{q_2}\ +

 +\ \frac{1}{H_1H_2}\left[\frac{\partial}{\partial q_1}(A_2H_2) - \frac{\partial}{\partial q_2}(A_1H_1)\right]\mathbf{q_3},

где Hi — коэффициенты Ламе.

Примеры

Простой пример

Uniform curl.svg

Рассмотрим векторное поле F, зависящее от координат x и y так:

\mathbf{F}(x,y)=y\mathbf e_x - x \mathbf e_y.

Вычислим ротор:

\mathbf{\nabla} \times \mathbf{F}  =0 \mathbf e_x + 0 \mathbf e_y+ \left[ {\frac{\partial}{\partial x}}(-x) -{\frac{\partial}{\partial y}} y \right] \mathbf e_z = -2\mathbf e_z

Как и предположили, направление совпало с отрицательным направлением оси z. В данном случае ротор оказался константой, то есть поле \mathbf{\nabla} \times \mathbf{F} оказалось однородным, не зависящим от координат (что естественно для вращения твёрдого тела). Что замечательно,

Угловая скорость вращения в данном примере одна и та же в любой точке пространства (угол поворота пылинки, приклеенной к твердому телу не зависит от того места, где именно приклеить пылинку). График ротора F поэтому не слишком интересен:

Curl of uniform curl.png

Более сложный пример

Теперь рассмотрим несколько более сложное векторное поле[7]:

F(x,y)=-x^2 \mathbf e_y.

Его график:

Nonuniformcurl.JPG

Мы можем не увидеть никакого вращения, но, посмотрев повнимательнее направо, мы видим большее поле в, например, точке _x_=4, чем в точке _x_=3. Если бы мы установили маленькое колесо с лопастями там, больший поток на правой стороне заставил бы колесо вращаться по часовой стрелке, что соответствует ввинчиванию в направлении -z. Если бы мы расположили колесо в левой части поля, больший поток на его левой стороне заставил бы колесо вращаться против часовой стрелки, что соответствует ввинчиванию в направлении +z. Проверим нашу догадку с помощью вычисления:

\mathbf{\nabla} \times \mathbf{F} =
0 \mathbf e_x + 0 \mathbf e_y + {\frac{\partial}{\partial x}}(-x^2) \mathbf e_z =
-2x \mathbf e_z

Действительно, ввинчивание происходит в направлении +z для отрицательных x и -z для положительных x, как и ожидалось. Так как этот ротор не одинаков в каждой точке, его график выглядит немного интереснее:

Ротор F с плоскостью x=0, выделенной тёмно-синим цветом

Можно заметить, что график этого ротора не зависит от y или z (как и должно быть) и направлен по -z для положительных x и в направлении +z для отрицательных x.

Три общих примера

Рассмотрим пример ∇ × [ v × F ]. Используя прямоугольную систему координат, можно показать, что

\mathbf{ \nabla \times} \left( \mathbf{v \times F} \right) = \left[ \left( \mathbf{ \nabla \cdot F } \right) + \mathbf{F \cdot \nabla} \right] \mathbf{v}- \left[ \left( \mathbf{ \nabla \cdot v } \right) + \mathbf{v \cdot \nabla} \right] \mathbf{F} \ .

Если v и поменять местами:

 \mathbf{v \  \times } \left( \mathbf{ \nabla \times F} \right) =\nabla_F \left( \mathbf{v \cdot F } \right) - \left( \mathbf{v \cdot \nabla } \right) \mathbf{ F} \ ,

что является фейнмановской записью с нижним индексом F, что значит, что градиент с индексом F относится только к F.

Другой пример ∇ × [ × F ]. Используя прямоугольную систему координат, можно показать, что:

 \nabla \times \left( \mathbf{\nabla \times F} \right) = \mathbf{\nabla} (\mathbf{\nabla \cdot F}) - \nabla^2 \mathbf{F}  \ ,

что можно считать частным случаем первого примера с подстановкой v.

Поясняющие примеры

Важный контринтуитивный пример

Довольно важно иметь в виду, что в принципе (хотя и далеко не всегда) направление ротора может не соответствовать направлению вращения поля (будем говорить для конкретности о поле скоростей жидкости), которое кажется очевидным по направлению искривления линий тока. Он может даже иметь противоположное направление (а в частном случае ротор может оказаться равным нулю, хотя линии тока загибаются или даже представляют собой точные окружности).

Дело в том, что ротор может быть представлен как сумма двух слагаемых, одно из которых завивит от кривизны линий тока, а второе от завивимости скорости течения от перпендикулярной (в данной точке) скорости течения координаты.

Рассмотрим частный, но хорошо иллюстрирующий сказанное пример. Пусть поле скорости течения жидкости v таково, что на любом фиксированном расстоянии r от некоторого фиксированного центра (поместим туда для удобства и начало координат) - жидкость течет точно по окружности с центром в начале координат и радиусом r (будем для краткости говорить в двумерных терминах; для перехода к трехмерной формулировке этого примера надо заменить слово "центр" на слово "ось").

Пусть скорость движения по каждой такой окружности (равная абсолютной величине вектора v) зависит только от r :

v \equiv |\mathbf v| = v(r).

Пусть направление вращения - против часовой стрелки (угловая скорость - вдоль оси z).

Нам будет досаточно вычислить ротор только вдоль оси x. Для этого выразим v (его компоненты) через координаты вблизи оси x.

v_x = - v(x) y / x,\

v_y = v(x).\

(Учитывая то, что вблизи оси x можем считать, что координата y << x, а при дифференцировании нам нужен будет только первый порядок, мы отбросили всё, меньшее y/x, и воспользовались тем, что вследствии этого x≈r).

Вычислим теперь прямо компоненту ротора на ось z:

(rot\ \mathbf v)_z = \partial_x v_y - \partial_y v_x,

что даст, если подставить сюда v_x, v_y приведённые выше,

(rot\ \mathbf v)_z = d v(x) / dx + v(x) / x.

Отсюда видно, что

Таким образом, мы видим, что в принципе просто из того, куда закручены линии тока не очевидно, куда направлен ротор такого течения. То есть не очевидно, в какую сторону будут вращаться пылинки в таком потоке. Зато достаточно ясно, что если где-то есть очень резкое убывание v(r), то направление ротора в этом месте будет направоено против того, которое соответствует направлению закручивания линий тока.

Этот частный пример означает, что и в общем случае однозначной связи между направлением закручивания линий поля и направлением вектора его ротора - нет.

Необходимо однако сделать две оговорки:

  1. всё сказанное не означает, что однозначной связи между направлением закручивания линий поля и направлением вектора ротора этого поля не может быть для каких-то конкретных полей (подчиняющихся определённым уравнениям) и даже, быть может, для большинства практически важных полей в простых ситуациях. Однако если такая связь для каких-то (и даже для многих) полей имеет место, то
    1. во-первых, это есть следствие не определения ротора, а других уравнений (которые могут быть справедливы для какого-то конкретного поля и какой-то конкретной ситуации, а могут - для других полей ситуаций - и не быть),
    2. во-вторых, даже если эти другие уравнения в простейшем случае дадут такую связь, то при усложнении ситуации она может пропасть. Например, при переходе от случая однородной среды к неоднородной; так, даже если для однородной жидкости в бесконечном свободном пространстве такая связь имела бы место, то для вращения жидкости в неподвижном сосуде, скажем круглом стакане, очевидно вблизи стенок ротор будет противоположен направлению вращения жидкости в целом.
  2. исходя из теоремы Стокса можно утверждать, что если (например) жидкость вращается по окружности, то где-то внутри этой окружности есть точки, в которых ротор имеет знак (направление), совпадающий с направлением циркуляции жидкости. В нашем примере быстроубывающего v(r), рассмотренном выше в этой главе, такая область находится вблизи центра (в предельном случае - в самом центре ротор даже становится бесконечным). Однако мы утверждаем (как это и видно из примера), что это совпадение не обязано существовать ни вблизи данной точки, ни даже везде внутри окружности данного радиуса (а лишь где-то внутри неё, хотя интеграл по всей её внутренности и даст таки это совпадение, то есть "в среднем" - направление совпадает; однако в большинстве точек - может быть и противоположным).

Примечания

  1. Также в немецкой, откуда, по-видимому, это обозначение и попало в русскую, а также почти везде в Европе, кроме Англии, где такое обозначение считается "альтернативным".
  2. Точнее - если F - псевдовекторное поле, то rot F - обычное векторное поле (вектор rot F - полярный), и наоборот, если поле F - поле обычного (полярного) вектора, то rot F - псевдовекторное поле.
  3. См. далее.
  4. Обычное соглашение, согласованное с определением через векторное произведение с оператором набла.
  5. То, что тензор антисимметричен, очевидно непосредственно из определения.
  6. 1 2 Для произвольной размерности - см. параграф «Обобщение».
  7. Простейшая физическая реализация такого поля (с точностью до аддитивной константы, которая не влияет на вычисление ротора, поскольку rot const = 0; кроме того, при желании эта константа может быть обнулена переходом в систему отсчета, связанной с максимально быстро текущей водой в центре струи) - ламинарное течение (вязкой) жидкости между двумя параллельными твердыми плоскостями, перпендикулярными оси х, под действием однородного силового поля (тяжести) или разности давлений. Течение жидкости в трубе круглого сечения даёт такую же зависимости v_y(x), поэтому приведённое дальше вычисление ротора применимо и к этому случаю (проще всего взять ось y совпадающей с осью трубы, и хотя зависимость \mathbf v (z) не будет уже константой, однако \partial v_y/\partial z будет нулем при z = 0, как и в основном примере, т.е. вычисление и ответ для любой плоскости, проходящей через ось трубы такой же, а это решает задачу).
  8. Математический словарь высшей школы. В. Т. Воднев, А. Ф. Наумович, Н. Ф. Наумович

См. также