Сурьма | это... Что такое Сурьма? (original) (raw)

51 ОловоСурьмаТеллур Периодическая система элементов 51Sb Rhombohedral.svg Electron shell 051 Antimony.svg
Внешний вид простого вещества
СурьмаМеталл серебристо-белого цвета
Свойства атома
Имя, символ, номер Сурьма́ / Stibium (Sb), 51
Атомная масса(молярная масса) 121,760 а. е. м. (г/моль)
Электронная конфигурация [Kr] 4d10 5s2 5p3
Радиус атома 159 пм
Химические свойства
Ковалентный радиус 140 пм
Радиус иона (+6e)62 (−3e)245 пм
Электроотрицательность 2,05 [1] (шкала Полинга)
Электродный потенциал 0
Степени окисления 5, 3, −3
Энергия ионизации(первый электрон) 833,3 (8,64) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 6,691 г/см³
Температура плавления 903,9 K
Температура кипения 1908 K
Теплота плавления 20,08 кДж/моль
Теплота испарения 195,2 кДж/моль
Молярная теплоёмкость 25,2[2] Дж/(K·моль)
Молярный объём 18,4 см³/моль
Кристаллическая решётка простого вещества
Структура решётки тригональная
Параметры решётки _a_hex=4,307; _c_hex=11,27[3] Å
Отношение c/a 2,62
Температура Дебая 200 K
Прочие характеристики
Теплопроводность (300 K) 24,43 Вт/(м·К)

Сурьма́ (лат. Stibium; обозначается символом Sb) химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) пятого периода периодической системы химических элементов Д. И. Менделеева; имеет атомный номер 51. Простое вещество сурьма (CAS-номер: 7440-36-0) — полуметалл серебристо-белого цвета с синеватым оттенком, грубозернистого строения. Известны четыре металлических аллотропных модификаций сурьмы, существующих при различных давлениях, и три аморфные модификации (взрывчатая, чёрная и жёлтая сурьма)[2].

Содержание

История

Сурьма известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 в. до н. э. порошок сурьмяного блеска (природный Sb2S3) под названием mesten или stem применялся для чернения бровей. В Древней Греции он был известен как stími и stíbi, отсюда латинский stibium. Около 12—14 вв. н. э. появилось название antimonium. В 1789 А. Лавуазье включил сурьму в список химических элементов под названием antimoine (современный английский antimony, испанский и итальянский antimonio, немецкий Antimon). Русская «сурьма» произошло от турецкого sürme; им обозначался порошок свинцового блеска PbS, также служивший для чернения бровей (по другим данным, «сурьма» — от персидского «сурме» — металл). Подробное описание свойств и способов получения сурьмы и её соединений впервые дано алхимиком Василием Валентином (Германия) в 1604.

Её соединения — Антимониды.

Нахождение в природе

Кларк сурьмы 500 мг/т. Её содержание в изверженных породах в общем ниже, чем в осадочных. Из осадочных пород наиболее высокие концентрации сурьмы отмечаются в глинистых сланцах (1,2 г/т), бокситах и фосфоритах (2 г/т) и самые низкие в известняках и песчаниках (0,3 г/т). Повышенные количества сурьмы установлены в золе углей. Сурьма, с одной стороны, в природных соединениях имеет свойства металла и является типичным халькофильным элементом, образуя антимонит. С другой стороны она обладает свойствами металлоида, проявляющимися в образовании различных сульфосолей — бурнонита, буланжерита, тетраэдрита, джемсонита, пираргирита и др. С такими металлами как медь, мышьяк и палладий, сурьма может давать интерметаллические соединения. Ионный радиус сурьмы Sb3+ наиболее близок к ионным радиусам мышьяка и висмута, благодаря чему наблюдается изоморфное замещение сурьмы и мышьяка в блёклых рудах и геокроните Pb5(Sb, As)2S8 и сурьмы и висмута в кобеллите Pb6FeBi4Sb2S16 и др. Сурьма в небольших количествах (граммы, десятки, редко сотни г/т) отмечается в галенитах, сфалеритах, висмутинах, реальгарах и других сульфидах. Летучесть сурьмы в ряде её соединений сравнительно невысокая. Наиболее высокой летучестью обладают галогениды сурьмы SbCl3. В гипергенных условиях (в приповерхностных слоях и на поверхности) антимонит подвергается окислению примерно по следующей схеме: Sb2S3 + 6O2 = Sb2(SO4)3. Возникающий при этом сульфат окиси сурьмы очень неустойчив и быстро гидролизирует, переходя в сурьмяные охры — сервантит Sb2O4, стибиоконит Sb2O4 • nH2O, валентинит Sb2O3 и др. Растворимость в воде довольно низкая (1,3 мг/л), но она значительно возрастает в растворах щелочей и сернистых металлов с образованием тиокислоты типа Na3SbS3. Содержание в морской воде 0,5 мкг/л[4]. Главное промышленное значение имеет антимонит Sb2S3 (71,7 % Sb). Сульфосоли тетраэдрит Cu12Sb4S13, бурнонит PbCuSbS3, буланжерит Pb5Sb4S11 и джемсонит Pb4FeSb6S14 имеют небольшое значение.

Генетические группы и промышленные типы месторождений

В низко- и среднетемпературных гидротермальных жилах с рудами серебра, кобальта и никеля, также в сульфидных рудах сложного состава.

Месторождения

Месторождения сурьмы известны в ЮАР, Алжире, Армении, Таджикистане, Болгарии, России, Финляндии, Китае, Киргизии[5][6].

Производство

По данным исследовательской компании Roskill, в 2010 г. 76,75 % мирового первичного производства сурьмы приходилось на Китай (120 462 т, включая официальное и неофициальное производство), второе место по объёмам производства занимала Россия (4,14 %; 6 500 т), третье — Мьянма (3,76 %; 5 897 т). Среди других крупных производителей — Канада (3,61 %; 5 660 т), Таджикистан (3,42 %; 5 370 т) и Боливия (3,17 %; 4 980 т). Всего в 2010 г. в мире было произведено 196 484 т сурьмы (из которых вторичное производство составляло 39 540 т)[7].

В 2010 г. официальное производство сурьмы в Китае снизилось по сравнению с 2006—2009 г. и в ближайшее время вряд ли увеличится, говорится в отчете Roskill[7].

В России крупнейший производитель сурьмы — это холдинг GeoProMining (6 500 т в 2010 г.), который занимается добычей и обработкой сурьмы на принадлежащих ему производственных комплексах «Сарылах-Сурьма» и «Звезда» в Республике Саха (Якутия)[8].

Резервы

Согласно статистическим данным Геологической службы США (United States Geological Survey):

Мировые резервы сурьмы в 2010 г. (содержание сурьмы в тоннах)[9]

Страна Резервы %
Flag of the People's Republic of China.svg КНР 950 000 51,88
Flag of Russia.svg Россия 350 000 19,12
Flag of Bolivia (state).svg Боливия 310 000 16,93
Flag of Tajikistan.svg Таджикистан 50 000 2,73
Flag of South Africa.svg ЮАР 21 000 1,15
Другие (Канада/Австралия) 150 000 8,19
Всего в мире 1 831 000 100,0

Изотопы

Природная сурьма является смесью двух изотопов: изотопная распространённость 57,36 %) и периодом полураспада 2,76 года, все остальные изотопы и изомеры сурьмы имеют период полураспада, не превышающий двух месяцев.

Пороговая энергия для реакций с высвобождением нейтрона (первого):

Физические и химические свойства

Сурьма в свободном состоянии образует серебристо-белые кристаллы с металлическим блеском, плотность 6,68 г/см³. Напоминая внешним видом металл, кристаллическая сурьма обладает большей хрупкостью и меньшей тепло- и электропроводностью[10].

Основные валентные состояния в соединениях: III и V.

Окисляющие концентрированные кислоты активно взаимодействуют с сурьмой.

\mathsf{2Sb\ +\ 6H_2SO_4\ \longrightarrow\ Sb_2(SO_4)_3\ +\ 3SO_2\uparrow +\ 6H_2O }

\mathsf{Sb\ +\ 5HNO_3\ \longrightarrow\ H_3SbO_4\ +\ 5NO_2\uparrow +\ H_2O }

Сурьма растворима в «Царской водке»:

\mathsf{3Sb\ +\ 18HCl\ +\ 5HNO_3\ \longrightarrow\ 3H[SbCl_6]\ +\ 5NO\uparrow +\ 10H_2O }

Применение

Сурьма всё больше применяется в полупроводниковой промышленности при производстве диодов, инфракрасных детекторов, устройств с эффектом Холла. Является компонентом свинцовых сплавов, увеличивающим их твёрдость и механическую прочность. Область применения включает:

Вместе с оловом и медью сурьма образует металлический сплав — баббит, обладающий антифрикционными свойствами и использующийся в подшипниках скольжения. Также Sb добавляется к металлам, предназначенным для тонких отливок.

Соединения сурьмы в форме оксидов, сульфидов, антимоната натрия и трихлорида сурьмы, применяются в производстве огнеупорных соединений, керамических эмалей, стекла, красок и керамических изделий. Триоксид сурьмы является наиболее важным из соединений сурьмы и главным образом используется в огнестойких композициях. Сульфид сурьмы является одним из ингредиентов в спичечных головках.

Природный сульфид сурьмы, стибнит, использовали в библейские времена в медицине и косметике. Стибнит до сих пор используется в некоторых развивающихся странах в качестве лекарства.

Соединения сурьмы, например, меглюмина антимониат (глюкантим) и натрия стибоглюконат (пентостам), применяются в лечении лейшманиоза.

Физические свойства

Обыкновенная сурьма — серебристо-белый с сильным блеском металл. В отличие от большинства других металлов, при застывании расширяется. Sb понижает точки плавления и кристаллизации свинца, а сам сплав при отвердении несколько расширяется в объёме.

Электроника

Входит в состав некоторых припоев.

Цены

Цены на металлическую сурьму в слитках чистотой 99,5 % составили около 15,5 долл/кг.

Термоэлектрические материалы

Теллурид сурьмы применяется как компонент термоэлектрических сплавов (термо-э.д.с 100—150 мкВ/К) с теллуридом висмута.

Биологическая роль и воздействие на организм

Skull and crossbones.svg

Сурьма относится к микроэлементам. Её содержание в организме человека составляет 10−6% по массе. Постоянно присутствует в живых организмах, физиологическая и биохимическая роль не выяснена. Сурьма проявляет раздражающее и кумулятивное действие. Накапливается в щитовидной железе, угнетает её функцию и вызывает эндемический зоб. Однако, попадая в пищеварительный тракт, соединения сурьмы не вызывают отравления, так как соли Sb(III) там гидролизуются с образованием малорастворимых продуктов. При этом соединения сурьмы (III) более токсичны, чем сурьмы (V). Пыль и пары Sb вызывают носовые кровотечения, сурьмяную «литейную лихорадку», пневмосклероз, поражают кожу, нарушают половые функции. Порог восприятия привкуса в воде — 0,5 мг/л. Смертельная доза для взрослого человека — 100 мг, для детей — 49 мг. Для аэрозолей сурьмы ПДК в воздухе рабочей зоны 0,5 мг/м³, в атмосферном воздухе 0,01 мг/м³. ПДК в почве 4,5 мг/кг. В питьевой воде сурьма относится ко 2 классу опасности, имеет ПДК 0,005 мг/л[11], установленное по санитарно-токсикологическому ЛПВ. В природных водах норматив содержания составляет 0,05 мг/л. В сточных промышленных водах, сбрасываемых на очистные сооружения, имеющие биофильтры, содержание сурьмы не должно превышать 0,2 мг/л[12].

См. также

Примечания

  1. Antimony: electronegativities (англ.). WebElements. Проверено 15 июля 2010.
  2. 1 2 Редкол.:Зефиров Н. С. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1995. — Т. 4. — С. 475. — 639 с. — 20 000 экз. — ISBN 5—85270—039—8
  3. WebElements Periodic Table of the Elements | Antimony | crystal structures
  4. J.P. Riley and Skirrow G. Chemical Oceanography V. I, 1965
  5. Месторождение сурьмы
  6. Категория: Месторождения сурьмы — wiki.web.ru
  7. 1 2 Study of the Antimony market by Roskill Consulting Group. Архивировано из первоисточника 28 мая 2012.
  8. GeoProMining: Sarylakh-Surma, Zvezda. Архивировано из первоисточника 28 мая 2012.
  9. Antimony Uses, Production and Prices Primer. Архивировано из первоисточника 28 мая 2012.
  10. Глинка Н. Л. «Общая химия», — Л. Химия, 1983г
  11. ГН 2.1.5.1315-03 ПДК химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования
  12. Алексеев А. И. и др. «Критерии качества водных систем», — СПб. ХИМИЗДАТ, 2002г

Ссылки

commons: Сурьма на Викискладе?
Периодическая система химических элементов Д. И. Менделеева
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
Щелочные металлы Щёлочноземельные металлы Лантаноиды Актиноиды Переходные металлы Другие металлы Металлоиды Другие неметаллы Галогены Инертные газы
Просмотр этого шаблона Электрохимический ряд активности металлов
Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2, W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au Элементы расположены в порядке возрастания стандартного электродного потенциала.