What’s new in 2.2.0 (January 19, 2024) — pandas 2.2.3 documentation (original) (raw)
These are the changes in pandas 2.2.0. See Release notes for a full changelog including other versions of pandas.
Upcoming changes in pandas 3.0#
pandas 3.0 will bring two bigger changes to the default behavior of pandas.
Copy-on-Write#
The currently optional mode Copy-on-Write will be enabled by default in pandas 3.0. There won’t be an option to keep the current behavior enabled. The new behavioral semantics are explained in the user guide about Copy-on-Write.
The new behavior can be enabled since pandas 2.0 with the following option:
pd.options.mode.copy_on_write = True
This change brings different changes in behavior in how pandas operates with respect to copies and views. Some of these changes allow a clear deprecation, like the changes in chained assignment. Other changes are more subtle and thus, the warnings are hidden behind an option that can be enabled in pandas 2.2.
pd.options.mode.copy_on_write = "warn"
This mode will warn in many different scenarios that aren’t actually relevant to most queries. We recommend exploring this mode, but it is not necessary to get rid of all of these warnings. The migration guideexplains the upgrade process in more detail.
Dedicated string data type (backed by Arrow) by default#
Historically, pandas represented string columns with NumPy object data type. This representation has numerous problems, including slow performance and a large memory footprint. This will change in pandas 3.0. pandas will start inferring string columns as a new string
data type, backed by Arrow, which represents strings contiguous in memory. This brings a huge performance and memory improvement.
Old behavior:
In [1]: ser = pd.Series(["a", "b"]) Out[1]: 0 a 1 b dtype: object
New behavior:
In [1]: ser = pd.Series(["a", "b"]) Out[1]: 0 a 1 b dtype: string
The string data type that is used in these scenarios will mostly behave as NumPy object would, including missing value semantics and general operations on these columns.
This change includes a few additional changes across the API:
- Currently, specifying
dtype="string"
creates a dtype that is backed by Python strings which are stored in a NumPy array. This will change in pandas 3.0, this dtype will create an Arrow backed string column. - The column names and the Index will also be backed by Arrow strings.
- PyArrow will become a required dependency with pandas 3.0 to accommodate this change.
This future dtype inference logic can be enabled with:
pd.options.future.infer_string = True
Enhancements#
ADBC Driver support in to_sql and read_sql#
read_sql() and to_sql() now work with Apache Arrow ADBC drivers. Compared to traditional drivers used via SQLAlchemy, ADBC drivers should provide significant performance improvements, better type support and cleaner nullability handling.
import adbc_driver_postgresql.dbapi as pg_dbapi
df = pd.DataFrame( [ [1, 2, 3], [4, 5, 6], ], columns=['a', 'b', 'c'] ) uri = "postgresql://postgres:postgres@localhost/postgres" with pg_dbapi.connect(uri) as conn: df.to_sql("pandas_table", conn, index=False)
for round-tripping
with pg_dbapi.connect(uri) as conn: df2 = pd.read_sql("pandas_table", conn)
The Arrow type system offers a wider array of types that can more closely match what databases like PostgreSQL can offer. To illustrate, note this (non-exhaustive) listing of types available in different databases and pandas backends:
numpy/pandas | arrow | postgres | sqlite |
---|---|---|---|
int16/Int16 | int16 | SMALLINT | INTEGER |
int32/Int32 | int32 | INTEGER | INTEGER |
int64/Int64 | int64 | BIGINT | INTEGER |
float32 | float32 | REAL | REAL |
float64 | float64 | DOUBLE PRECISION | REAL |
object | string | TEXT | TEXT |
bool | bool_ | BOOLEAN | |
datetime64[ns] | timestamp(us) | TIMESTAMP | |
datetime64[ns,tz] | timestamp(us,tz) | TIMESTAMPTZ | |
date32 | DATE | ||
month_day_nano_interval | INTERVAL | ||
binary | BINARY | BLOB | |
decimal128 | DECIMAL [1] | ||
list | ARRAY [1] | ||
struct | COMPOSITE TYPE[1] |
Footnotes
If you are interested in preserving database types as best as possible throughout the lifecycle of your DataFrame, users are encouraged to leverage the dtype_backend="pyarrow"
argument of read_sql()
for round-tripping
with pg_dbapi.connect(uri) as conn: df2 = pd.read_sql("pandas_table", conn, dtype_backend="pyarrow")
This will prevent your data from being converted to the traditional pandas/NumPy type system, which often converts SQL types in ways that make them impossible to round-trip.
For a full list of ADBC drivers and their development status, see the ADBC Driver Implementation Statusdocumentation.
Create a pandas Series based on one or more conditions#
The Series.case_when() function has been added to create a Series object based on one or more conditions. (GH 39154)
In [1]: import pandas as pd
In [2]: df = pd.DataFrame(dict(a=[1, 2, 3], b=[4, 5, 6]))
In [3]: default=pd.Series('default', index=df.index)
In [4]: default.case_when( ...: caselist=[ ...: (df.a == 1, 'first'), # condition, replacement ...: (df.a.gt(1) & df.b.eq(5), 'second'), # condition, replacement ...: ], ...: ) ...: Out[4]: 0 first 1 second 2 default dtype: object
to_numpy
for NumPy nullable and Arrow types converts to suitable NumPy dtype#
to_numpy
for NumPy nullable and Arrow types will now convert to a suitable NumPy dtype instead of object
dtype for nullable and PyArrow backed extension dtypes.
Old behavior:
In [1]: ser = pd.Series([1, 2, 3], dtype="Int64") In [2]: ser.to_numpy() Out[2]: array([1, 2, 3], dtype=object)
New behavior:
In [5]: ser = pd.Series([1, 2, 3], dtype="Int64")
In [6]: ser.to_numpy() Out[6]: array([1, 2, 3])
In [7]: ser = pd.Series([1, 2, 3], dtype="timestamp[ns][pyarrow]")
In [8]: ser.to_numpy() Out[8]: array(['1970-01-01T00:00:00.000000001', '1970-01-01T00:00:00.000000002', '1970-01-01T00:00:00.000000003'], dtype='datetime64[ns]')
The default NumPy dtype (without any arguments) is determined as follows:
- float dtypes are cast to NumPy floats
- integer dtypes without missing values are cast to NumPy integer dtypes
- integer dtypes with missing values are cast to NumPy float dtypes and
NaN
is used as missing value indicator - boolean dtypes without missing values are cast to NumPy bool dtype
- boolean dtypes with missing values keep object dtype
- datetime and timedelta types are cast to Numpy datetime64 and timedelta64 types respectively and
NaT
is used as missing value indicator
Series.struct accessor for PyArrow structured data#
The Series.struct
accessor provides attributes and methods for processing data with struct[pyarrow]
dtype Series. For example,Series.struct.explode() converts PyArrow structured data to a pandas DataFrame. (GH 54938)
In [9]: import pyarrow as pa
In [10]: series = pd.Series( ....: [ ....: {"project": "pandas", "version": "2.2.0"}, ....: {"project": "numpy", "version": "1.25.2"}, ....: {"project": "pyarrow", "version": "13.0.0"}, ....: ], ....: dtype=pd.ArrowDtype( ....: pa.struct([ ....: ("project", pa.string()), ....: ("version", pa.string()), ....: ]) ....: ), ....: ) ....:
In [11]: series.struct.explode() Out[11]: project version 0 pandas 2.2.0 1 numpy 1.25.2 2 pyarrow 13.0.0
Use Series.struct.field() to index into a (possible nested) struct field.
In [12]: series.struct.field("project") Out[12]: 0 pandas 1 numpy 2 pyarrow Name: project, dtype: string[pyarrow]
Series.list accessor for PyArrow list data#
The Series.list
accessor provides attributes and methods for processing data with list[pyarrow]
dtype Series. For example,Series.list.__getitem__() allows indexing pyarrow lists in a Series. (GH 55323)
In [13]: import pyarrow as pa
In [14]: series = pd.Series( ....: [ ....: [1, 2, 3], ....: [4, 5], ....: [6], ....: ], ....: dtype=pd.ArrowDtype( ....: pa.list_(pa.int64()) ....: ), ....: ) ....:
In [15]: series.list[0] Out[15]: 0 1 1 4 2 6 dtype: int64[pyarrow]
Calamine engine for read_excel()#
The calamine
engine was added to read_excel(). It uses python-calamine
, which provides Python bindings for the Rust library calamine. This engine supports Excel files (.xlsx
, .xlsm
, .xls
, .xlsb
) and OpenDocument spreadsheets (.ods
) (GH 50395).
There are two advantages of this engine:
- Calamine is often faster than other engines, some benchmarks show results up to 5x faster than ‘openpyxl’, 20x - ‘odf’, 4x - ‘pyxlsb’, and 1.5x - ‘xlrd’. But, ‘openpyxl’ and ‘pyxlsb’ are faster in reading a few rows from large files because of lazy iteration over rows.
- Calamine supports the recognition of datetime in
.xlsb
files, unlike ‘pyxlsb’ which is the only other engine in pandas that can read.xlsb
files.
pd.read_excel("path_to_file.xlsb", engine="calamine")
For more, see Calamine (Excel and ODS files) in the user guide on IO tools.
Other enhancements#
- to_sql() with method parameter set to
multi
works with Oracle on the backend - Series.attrs / DataFrame.attrs now uses a deepcopy for propagating
attrs
(GH 54134). - get_dummies() now returning extension dtypes
boolean
orbool[pyarrow]
that are compatible with the input dtype (GH 56273) - read_csv() now supports
on_bad_lines
parameter withengine="pyarrow"
(GH 54480) - read_sas() returns
datetime64
dtypes with resolutions better matching those stored natively in SAS, and avoids returning object-dtype in cases that cannot be stored withdatetime64[ns]
dtype (GH 56127) - read_spss() now returns a DataFrame that stores the metadata in DataFrame.attrs (GH 54264)
- tseries.api.guess_datetime_format() is now part of the public API (GH 54727)
- DataFrame.apply() now allows the usage of numba (via
engine="numba"
) to JIT compile the passed function, allowing for potential speedups (GH 54666) ExtensionArray._explode()
interface method added to allow extension type implementations of theexplode
method (GH 54833)ExtensionArray.duplicated()
added to allow extension type implementations of theduplicated
method (GH 55255)- Series.ffill(), Series.bfill(), DataFrame.ffill(), and DataFrame.bfill() have gained the argument
limit_area
; 3rd party ExtensionArray authors need to add this argument to the method_pad_or_backfill
(GH 56492) - Allow passing
read_only
,data_only
andkeep_links
arguments to openpyxl usingengine_kwargs
of read_excel() (GH 55027) - Implement Series.interpolate() and DataFrame.interpolate() for ArrowDtype and masked dtypes (GH 56267)
- Implement masked algorithms for Series.value_counts() (GH 54984)
- Implemented Series.dt() methods and attributes for ArrowDtype with
pyarrow.duration
type (GH 52284) - Implemented Series.str.extract() for ArrowDtype (GH 56268)
- Improved error message that appears in DatetimeIndex.to_period() with frequencies which are not supported as period frequencies, such as
"BMS"
(GH 56243) - Improved error message when constructing Period with invalid offsets such as
"QS"
(GH 55785) - The dtypes
string[pyarrow]
andstring[pyarrow_numpy]
now both utilize thelarge_string
type from PyArrow to avoid overflow for long columns (GH 56259)
Notable bug fixes#
These are bug fixes that might have notable behavior changes.
merge() and DataFrame.join() now consistently follow documented sort behavior#
In previous versions of pandas, merge() and DataFrame.join() did not always return a result that followed the documented sort behavior. pandas now follows the documented sort behavior in merge and join operations (GH 54611, GH 56426, GH 56443).
As documented, sort=True
sorts the join keys lexicographically in the resultingDataFrame. With sort=False
, the order of the join keys depends on the join type (how
keyword):
how="left"
: preserve the order of the left keyshow="right"
: preserve the order of the right keyshow="inner"
: preserve the order of the left keyshow="outer"
: sort keys lexicographically
One example with changing behavior is inner joins with non-unique left join keys and sort=False
:
In [16]: left = pd.DataFrame({"a": [1, 2, 1]})
In [17]: right = pd.DataFrame({"a": [1, 2]})
In [18]: result = pd.merge(left, right, how="inner", on="a", sort=False)
Old Behavior
In [5]: result Out[5]: a 0 1 1 1 2 2
New Behavior
In [19]: result Out[19]: a 0 1 1 2 2 1
merge() and DataFrame.join() no longer reorder levels when levels differ#
In previous versions of pandas, merge() and DataFrame.join() would reorder index levels when joining on two indexes with different levels (GH 34133).
In [20]: left = pd.DataFrame({"left": 1}, index=pd.MultiIndex.from_tuples([("x", 1), ("x", 2)], names=["A", "B"]))
In [21]: right = pd.DataFrame({"right": 2}, index=pd.MultiIndex.from_tuples([(1, 1), (2, 2)], names=["B", "C"]))
In [22]: left
Out[22]:
left
A B
x 1 1
2 1
In [23]: right
Out[23]:
right
B C
1 1 2
2 2 2
In [24]: result = left.join(right)
Old Behavior
In [5]: result Out[5]: left right B A C 1 x 1 1 2 2 x 2 1 2
New Behavior
In [25]: result
Out[25]:
left right
A B C
x 1 1 1 2
2 2 1 2
Increased minimum versions for dependencies#
For optional dependencies the general recommendation is to use the latest version. Optional dependencies below the lowest tested version may still work but are not considered supported. The following table lists the optional dependencies that have had their minimum tested version increased.
Package | New Minimum Version |
---|---|
beautifulsoup4 | 4.11.2 |
blosc | 1.21.3 |
bottleneck | 1.3.6 |
fastparquet | 2022.12.0 |
fsspec | 2022.11.0 |
gcsfs | 2022.11.0 |
lxml | 4.9.2 |
matplotlib | 3.6.3 |
numba | 0.56.4 |
numexpr | 2.8.4 |
qtpy | 2.3.0 |
openpyxl | 3.1.0 |
psycopg2 | 2.9.6 |
pyreadstat | 1.2.0 |
pytables | 3.8.0 |
pyxlsb | 1.0.10 |
s3fs | 2022.11.0 |
scipy | 1.10.0 |
sqlalchemy | 2.0.0 |
tabulate | 0.9.0 |
xarray | 2022.12.0 |
xlsxwriter | 3.0.5 |
zstandard | 0.19.0 |
pyqt5 | 5.15.8 |
tzdata | 2022.7 |
See Dependencies and Optional dependencies for more.
Other API changes#
- The hash values of nullable extension dtypes changed to improve the performance of the hashing operation (GH 56507)
check_exact
now only takes effect for floating-point dtypes in testing.assert_frame_equal() and testing.assert_series_equal(). In particular, integer dtypes are always checked exactly (GH 55882)
Deprecations#
Chained assignment#
In preparation of larger upcoming changes to the copy / view behaviour in pandas 3.0 (Copy-on-Write (CoW), PDEP-7), we started deprecating chained assignment.
Chained assignment occurs when you try to update a pandas DataFrame or Series through two subsequent indexing operations. Depending on the type and order of those operations this currently does or does not work.
A typical example is as follows:
df = pd.DataFrame({"foo": [1, 2, 3], "bar": [4, 5, 6]})
first selecting rows with a mask, then assigning values to a column
-> this has never worked and raises a SettingWithCopyWarning
df[df["bar"] > 5]["foo"] = 100
first selecting the column, and then assigning to a subset of that column
-> this currently works
df["foo"][df["bar"] > 5] = 100
This second example of chained assignment currently works to update the original df
. This will no longer work in pandas 3.0, and therefore we started deprecating this:
df["foo"][df["bar"] > 5] = 100 FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. A typical example is when you are setting values in a column of a DataFrame, like:
df["col"][row_indexer] = value
Use df.loc[row_indexer, "col"] = values
instead, to perform the assignment in a single step and ensure this keeps updating the original df
.
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
You can fix this warning and ensure your code is ready for pandas 3.0 by removing the usage of chained assignment. Typically, this can be done by doing the assignment in a single step using for example .loc
. For the example above, we can do:
df.loc[df["bar"] > 5, "foo"] = 100
The same deprecation applies to inplace methods that are done in a chained manner, such as:
df["foo"].fillna(0, inplace=True) FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method. The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
When the goal is to update the column in the DataFrame df
, the alternative here is to call the method on df
itself, such as df.fillna({"foo": 0}, inplace=True)
.
See more details in the migration guide.
Deprecate aliases M
, Q
, Y
, etc. in favour of ME
, QE
, YE
, etc. for offsets#
Deprecated the following frequency aliases (GH 9586):
offsets | deprecated aliases | new aliases |
---|---|---|
MonthEnd | M | ME |
BusinessMonthEnd | BM | BME |
SemiMonthEnd | SM | SME |
CustomBusinessMonthEnd | CBM | CBME |
QuarterEnd | Q | QE |
BQuarterEnd | BQ | BQE |
YearEnd | Y | YE |
BYearEnd | BY | BYE |
For example:
Previous behavior:
In [8]: pd.date_range('2020-01-01', periods=3, freq='Q-NOV') Out[8]: DatetimeIndex(['2020-02-29', '2020-05-31', '2020-08-31'], dtype='datetime64[ns]', freq='Q-NOV')
Future behavior:
In [26]: pd.date_range('2020-01-01', periods=3, freq='QE-NOV') Out[26]: DatetimeIndex(['2020-02-29', '2020-05-31', '2020-08-31'], dtype='datetime64[ns]', freq='QE-NOV')
Deprecated automatic downcasting#
Deprecated the automatic downcasting of object dtype results in a number of methods. These would silently change the dtype in a hard to predict manner since the behavior was value dependent. Additionally, pandas is moving away from silent dtype changes (GH 54710, GH 54261).
These methods are:
- Series.replace() and DataFrame.replace()
- DataFrame.fillna(), Series.fillna()
- DataFrame.ffill(), Series.ffill()
- DataFrame.bfill(), Series.bfill()
- DataFrame.mask(), Series.mask()
- DataFrame.where(), Series.where()
- DataFrame.clip(), Series.clip()
Explicitly call DataFrame.infer_objects() to replicate the current behavior in the future.
result = result.infer_objects(copy=False)
Or explicitly cast all-round floats to ints using astype
.
Set the following option to opt into the future behavior:
In [9]: pd.set_option("future.no_silent_downcasting", True)
Other Deprecations#
- Changed
Timedelta.resolution_string()
to returnh
,min
,s
,ms
,us
, andns
instead ofH
,T
,S
,L
,U
, andN
, for compatibility with respective deprecations in frequency aliases (GH 52536) - Deprecated
offsets.Day.delta
,offsets.Hour.delta
,offsets.Minute.delta
,offsets.Second.delta
,offsets.Milli.delta
,offsets.Micro.delta
,offsets.Nano.delta
, usepd.Timedelta(obj)
instead (GH 55498) - Deprecated pandas.api.types.is_interval() and
pandas.api.types.is_period()
, useisinstance(obj, pd.Interval)
andisinstance(obj, pd.Period)
instead (GH 55264) - Deprecated read_gbq() and DataFrame.to_gbq(). Use
pandas_gbq.read_gbq
andpandas_gbq.to_gbq
instead https://pandas-gbq.readthedocs.io/en/latest/api.html (GH 55525) - Deprecated DataFrameGroupBy.fillna() and SeriesGroupBy.fillna(); use DataFrameGroupBy.ffill(), DataFrameGroupBy.bfill() for forward and backward filling or DataFrame.fillna() to fill with a single value (or the Series equivalents) (GH 55718)
- Deprecated
DateOffset.is_anchored()
, useobj.n == 1
for non-Tick subclasses (for Tick this was always False) (GH 55388) - Deprecated
DatetimeArray.__init__()
andTimedeltaArray.__init__()
, use array() instead (GH 55623) - Deprecated
Index.format()
, useindex.astype(str)
orindex.map(formatter)
instead (GH 55413) - Deprecated Series.ravel(), the underlying array is already 1D, so ravel is not necessary (GH 52511)
- Deprecated Series.resample() and DataFrame.resample() with a PeriodIndex (and the ‘convention’ keyword), convert to DatetimeIndex (with
.to_timestamp()
) before resampling instead (GH 53481) - Deprecated Series.view(), use Series.astype() instead to change the dtype (GH 20251)
- Deprecated
offsets.Tick.is_anchored()
, useFalse
instead (GH 55388) - Deprecated
core.internals
membersBlock
,ExtensionBlock
, andDatetimeTZBlock
, use public APIs instead (GH 55139) - Deprecated
year
,month
,quarter
,day
,hour
,minute
, andsecond
keywords in the PeriodIndex constructor, use PeriodIndex.from_fields() instead (GH 55960) - Deprecated accepting a type as an argument in Index.view(), call without any arguments instead (GH 55709)
- Deprecated allowing non-integer
periods
argument in date_range(), timedelta_range(), period_range(), and interval_range() (GH 56036) - Deprecated allowing non-keyword arguments in DataFrame.to_clipboard() (GH 54229)
- Deprecated allowing non-keyword arguments in DataFrame.to_csv() except
path_or_buf
(GH 54229) - Deprecated allowing non-keyword arguments in DataFrame.to_dict() (GH 54229)
- Deprecated allowing non-keyword arguments in DataFrame.to_excel() except
excel_writer
(GH 54229) - Deprecated allowing non-keyword arguments in DataFrame.to_gbq() except
destination_table
(GH 54229) - Deprecated allowing non-keyword arguments in DataFrame.to_hdf() except
path_or_buf
(GH 54229) - Deprecated allowing non-keyword arguments in DataFrame.to_html() except
buf
(GH 54229) - Deprecated allowing non-keyword arguments in DataFrame.to_json() except
path_or_buf
(GH 54229) - Deprecated allowing non-keyword arguments in DataFrame.to_latex() except
buf
(GH 54229) - Deprecated allowing non-keyword arguments in DataFrame.to_markdown() except
buf
(GH 54229) - Deprecated allowing non-keyword arguments in DataFrame.to_parquet() except
path
(GH 54229) - Deprecated allowing non-keyword arguments in DataFrame.to_pickle() except
path
(GH 54229) - Deprecated allowing non-keyword arguments in DataFrame.to_string() except
buf
(GH 54229) - Deprecated allowing non-keyword arguments in DataFrame.to_xml() except
path_or_buffer
(GH 54229) - Deprecated allowing passing
BlockManager
objects to DataFrame orSingleBlockManager
objects to Series (GH 52419) - Deprecated behavior of Index.insert() with an object-dtype index silently performing type inference on the result, explicitly call
result.infer_objects(copy=False)
for the old behavior instead (GH 51363) - Deprecated casting non-datetimelike values (mainly strings) in Series.isin() and Index.isin() with
datetime64
,timedelta64
, and PeriodDtype dtypes (GH 53111) - Deprecated dtype inference in Index, Series and DataFrame constructors when giving a pandas input, call
.infer_objects
on the input to keep the current behavior (GH 56012) - Deprecated dtype inference when setting a Index into a DataFrame, cast explicitly instead (GH 56102)
- Deprecated including the groups in computations when using DataFrameGroupBy.apply() and DataFrameGroupBy.resample(); pass
include_groups=False
to exclude the groups (GH 7155) - Deprecated indexing an Index with a boolean indexer of length zero (GH 55820)
- Deprecated not passing a tuple to
DataFrameGroupBy.get_group
orSeriesGroupBy.get_group
when grouping by a length-1 list-like (GH 25971) - Deprecated string
AS
denoting frequency inYearBegin
and stringsAS-DEC
,AS-JAN
, etc. denoting annual frequencies with various fiscal year starts (GH 54275) - Deprecated string
A
denoting frequency inYearEnd
and stringsA-DEC
,A-JAN
, etc. denoting annual frequencies with various fiscal year ends (GH 54275) - Deprecated string
BAS
denoting frequency inBYearBegin
and stringsBAS-DEC
,BAS-JAN
, etc. denoting annual frequencies with various fiscal year starts (GH 54275) - Deprecated string
BA
denoting frequency inBYearEnd
and stringsBA-DEC
,BA-JAN
, etc. denoting annual frequencies with various fiscal year ends (GH 54275) - Deprecated strings
H
,BH
, andCBH
denoting frequencies inHour
,BusinessHour
,CustomBusinessHour
(GH 52536) - Deprecated strings
H
,S
,U
, andN
denoting units in to_timedelta() (GH 52536) - Deprecated strings
H
,T
,S
,L
,U
, andN
denoting units in Timedelta (GH 52536) - Deprecated strings
T
,S
,L
,U
, andN
denoting frequencies inMinute
,Second
,Milli
,Micro
,Nano
(GH 52536) - Deprecated support for combining parsed datetime columns in read_csv() along with the
keep_date_col
keyword (GH 55569) - Deprecated the
DataFrameGroupBy.grouper
andSeriesGroupBy.grouper
; these attributes will be removed in a future version of pandas (GH 56521) - Deprecated the
Grouping
attributesgroup_index
,result_index
, andgroup_arraylike
; these will be removed in a future version of pandas (GH 56148) - Deprecated the
delim_whitespace
keyword in read_csv() and read_table(), usesep="\\s+"
instead (GH 55569) - Deprecated the
errors="ignore"
option in to_datetime(), to_timedelta(), and to_numeric(); explicitly catch exceptions instead (GH 54467) - Deprecated the
fastpath
keyword in the Series constructor (GH 20110) - Deprecated the
kind
keyword in Series.resample() and DataFrame.resample(), explicitly cast the object’sindex
instead (GH 55895) - Deprecated the
ordinal
keyword in PeriodIndex, use PeriodIndex.from_ordinals() instead (GH 55960) - Deprecated the
unit
keyword in TimedeltaIndex construction, use to_timedelta() instead (GH 55499) - Deprecated the
verbose
keyword in read_csv() and read_table() (GH 55569) - Deprecated the behavior of DataFrame.replace() and Series.replace() with CategoricalDtype; in a future version replace will change the values while preserving the categories. To change the categories, use
ser.cat.rename_categories
instead (GH 55147) - Deprecated the behavior of Series.value_counts() and Index.value_counts() with object dtype; in a future version these will not perform dtype inference on the resulting Index, do
result.index = result.index.infer_objects()
to retain the old behavior (GH 56161) - Deprecated the default of
observed=False
in DataFrame.pivot_table(); will beTrue
in a future version (GH 56236) - Deprecated the extension test classes
BaseNoReduceTests
,BaseBooleanReduceTests
, andBaseNumericReduceTests
, useBaseReduceTests
instead (GH 54663) - Deprecated the option
mode.data_manager
and theArrayManager
; only theBlockManager
will be available in future versions (GH 55043) - Deprecated the previous implementation of DataFrame.stack; specify
future_stack=True
to adopt the future version (GH 53515)
Performance improvements#
- Performance improvement in testing.assert_frame_equal() and testing.assert_series_equal() (GH 55949, GH 55971)
- Performance improvement in concat() with
axis=1
and objects with unaligned indexes (GH 55084) - Performance improvement in get_dummies() (GH 56089)
- Performance improvement in merge() and merge_ordered() when joining on sorted ascending keys (GH 56115)
- Performance improvement in merge_asof() when
by
is notNone
(GH 55580, GH 55678) - Performance improvement in read_stata() for files with many variables (GH 55515)
- Performance improvement in DataFrame.groupby() when aggregating pyarrow timestamp and duration dtypes (GH 55031)
- Performance improvement in DataFrame.join() when joining on unordered categorical indexes (GH 56345)
- Performance improvement in DataFrame.loc() and Series.loc() when indexing with a MultiIndex (GH 56062)
- Performance improvement in DataFrame.sort_index() and Series.sort_index() when indexed by a MultiIndex (GH 54835)
- Performance improvement in DataFrame.to_dict() on converting DataFrame to dictionary (GH 50990)
- Performance improvement in Index.difference() (GH 55108)
- Performance improvement in Index.sort_values() when index is already sorted (GH 56128)
- Performance improvement in MultiIndex.get_indexer() when
method
is notNone
(GH 55839) - Performance improvement in Series.duplicated() for pyarrow dtypes (GH 55255)
- Performance improvement in Series.str.get_dummies() when dtype is
"string[pyarrow]"
or"string[pyarrow_numpy]"
(GH 56110) - Performance improvement in Series.str() methods (GH 55736)
- Performance improvement in Series.value_counts() and Series.mode() for masked dtypes (GH 54984, GH 55340)
- Performance improvement in DataFrameGroupBy.nunique() and SeriesGroupBy.nunique() (GH 55972)
- Performance improvement in SeriesGroupBy.idxmax(), SeriesGroupBy.idxmin(), DataFrameGroupBy.idxmax(), DataFrameGroupBy.idxmin() (GH 54234)
- Performance improvement when hashing a nullable extension array (GH 56507)
- Performance improvement when indexing into a non-unique index (GH 55816)
- Performance improvement when indexing with more than 4 keys (GH 54550)
- Performance improvement when localizing time to UTC (GH 55241)
Bug fixes#
Categorical#
Categorical.isin()
raisingInvalidIndexError
for categorical containing overlapping Interval values (GH 34974)- Bug in
CategoricalDtype.__eq__()
returningFalse
for unordered categorical data with mixed types (GH 55468) - Bug when casting
pa.dictionary
to CategoricalDtype using apa.DictionaryArray
as categories (GH 56672)
Datetimelike#
- Bug in DatetimeIndex construction when passing both a
tz
and eitherdayfirst
oryearfirst
ignoring dayfirst/yearfirst (GH 55813) - Bug in DatetimeIndex when passing an object-dtype ndarray of float objects and a
tz
incorrectly localizing the result (GH 55780) - Bug in Series.isin() with DatetimeTZDtype dtype and comparison values that are all
NaT
incorrectly returning all-False
even if the series containsNaT
entries (GH 56427) - Bug in concat() raising
AttributeError
when concatenating all-NA DataFrame with DatetimeTZDtype dtype DataFrame (GH 52093) - Bug in testing.assert_extension_array_equal() that could use the wrong unit when comparing resolutions (GH 55730)
- Bug in to_datetime() and DatetimeIndex when passing a list of mixed-string-and-numeric types incorrectly raising (GH 55780)
- Bug in to_datetime() and DatetimeIndex when passing mixed-type objects with a mix of timezones or mix of timezone-awareness failing to raise
ValueError
(GH 55693) - Bug in
Tick.delta()
with very large ticks raisingOverflowError
instead ofOutOfBoundsTimedelta
(GH 55503) - Bug in
DatetimeIndex.shift()
with non-nanosecond resolution incorrectly returning with nanosecond resolution (GH 56117) - Bug in
DatetimeIndex.union()
returning object dtype for tz-aware indexes with the same timezone but different units (GH 55238) - Bug in Index.is_monotonic_increasing() and Index.is_monotonic_decreasing() always caching Index.is_unique() as
True
when first value in index isNaT
(GH 55755) - Bug in Index.view() to a datetime64 dtype with non-supported resolution incorrectly raising (GH 55710)
- Bug in Series.dt.round() with non-nanosecond resolution and
NaT
entries incorrectly raisingOverflowError
(GH 56158) - Bug in Series.fillna() with non-nanosecond resolution dtypes and higher-resolution vector values returning incorrect (internally-corrupted) results (GH 56410)
- Bug in Timestamp.unit() being inferred incorrectly from an ISO8601 format string with minute or hour resolution and a timezone offset (GH 56208)
- Bug in
.astype
converting from a higher-resolutiondatetime64
dtype to a lower-resolutiondatetime64
dtype (e.g.datetime64[us]->datetime64[ms]
) silently overflowing with values near the lower implementation bound (GH 55979) - Bug in adding or subtracting a
Week
offset to adatetime64
Series, Index, or DataFrame column with non-nanosecond resolution returning incorrect results (GH 55583) - Bug in addition or subtraction of
BusinessDay
offset withoffset
attribute to non-nanosecond Index, Series, or DataFrame column giving incorrect results (GH 55608) - Bug in addition or subtraction of
DateOffset
objects with microsecond components todatetime64
Index, Series, or DataFrame columns with non-nanosecond resolution (GH 55595) - Bug in addition or subtraction of very large Tick objects with Timestamp or Timedelta objects raising
OverflowError
instead ofOutOfBoundsTimedelta
(GH 55503) - Bug in creating a Index, Series, or DataFrame with a non-nanosecond DatetimeTZDtype and inputs that would be out of bounds with nanosecond resolution incorrectly raising
OutOfBoundsDatetime
(GH 54620) - Bug in creating a Index, Series, or DataFrame with a non-nanosecond
datetime64
(or DatetimeTZDtype) from mixed-numeric inputs treating those as nanoseconds instead of as multiples of the dtype’s unit (which would happen with non-mixed numeric inputs) (GH 56004) - Bug in creating a Index, Series, or DataFrame with a non-nanosecond
datetime64
dtype and inputs that would be out of bounds for adatetime64[ns]
incorrectly raisingOutOfBoundsDatetime
(GH 55756) - Bug in parsing datetime strings with nanosecond resolution with non-ISO8601 formats incorrectly truncating sub-microsecond components (GH 56051)
- Bug in parsing datetime strings with sub-second resolution and trailing zeros incorrectly inferring second or millisecond resolution (GH 55737)
- Bug in the results of to_datetime() with an floating-dtype argument with
unit
not matching the pointwise results of Timestamp (GH 56037) - Fixed regression where concat() would raise an error when concatenating
datetime64
columns with differing resolutions (GH 53641)
Timedelta#
- Bug in Timedelta construction raising
OverflowError
instead ofOutOfBoundsTimedelta
(GH 55503) - Bug in rendering (
__repr__
) of TimedeltaIndex and Series with timedelta64 values with non-nanosecond resolution entries that are all multiples of 24 hours failing to use the compact representation used in the nanosecond cases (GH 55405)
Timezones#
- Bug in
AbstractHolidayCalendar
where timezone data was not propagated when computing holiday observances (GH 54580) - Bug in Timestamp construction with an ambiguous value and a
pytz
timezone failing to raisepytz.AmbiguousTimeError
(GH 55657) - Bug in Timestamp.tz_localize() with
nonexistent="shift_forward
around UTC+0 during DST (GH 51501)
Numeric#
- Bug in read_csv() with
engine="pyarrow"
causing rounding errors for large integers (GH 52505) - Bug in
Series.__floordiv__()
andSeries.__truediv__()
for ArrowDtype with integral dtypes raising for large divisors (GH 56706) - Bug in
Series.__floordiv__()
for ArrowDtype with integral dtypes raising for large values (GH 56645) - Bug in Series.pow() not filling missing values correctly (GH 55512)
- Bug in Series.replace() and DataFrame.replace() matching float
0.0
withFalse
and vice versa (GH 55398) - Bug in Series.round() raising for nullable boolean dtype (GH 55936)
Conversion#
- Bug in DataFrame.astype() when called with
str
on unpickled array - the array might change in-place (GH 54654) - Bug in DataFrame.astype() where
errors="ignore"
had no effect for extension types (GH 54654) - Bug in Series.convert_dtypes() not converting all NA column to
null[pyarrow]
(GH 55346) - Bug in :meth:
DataFrame.loc
was not throwing “incompatible dtype warning” (see PDEP6) when assigning aSeries
with a different dtype using a full column setter (e.g.df.loc[:, 'a'] = incompatible_value
) (GH 39584)
Strings#
- Bug in pandas.api.types.is_string_dtype() while checking object array with no elements is of the string dtype (GH 54661)
- Bug in DataFrame.apply() failing when
engine="numba"
and columns or index haveStringDtype
(GH 56189) - Bug in DataFrame.reindex() not matching Index with
string[pyarrow_numpy]
dtype (GH 56106) - Bug in
Index.str.cat()
always casting result to object dtype (GH 56157) - Bug in
Series.__mul__()
for ArrowDtype withpyarrow.string
dtype andstring[pyarrow]
for the pyarrow backend (GH 51970) - Bug in Series.str.find() when
start < 0
for ArrowDtype withpyarrow.string
(GH 56411) - Bug in Series.str.fullmatch() when
dtype=pandas.ArrowDtype(pyarrow.string()))
allows partial matches when regex ends in literal //$ (GH 56652) - Bug in Series.str.replace() when
n < 0
for ArrowDtype withpyarrow.string
(GH 56404) - Bug in Series.str.startswith() and Series.str.endswith() with arguments of type
tuple[str, ...]
for ArrowDtype withpyarrow.string
dtype (GH 56579) - Bug in Series.str.startswith() and Series.str.endswith() with arguments of type
tuple[str, ...]
forstring[pyarrow]
(GH 54942) - Bug in comparison operations for
dtype="string[pyarrow_numpy]"
raising if dtypes can’t be compared (GH 56008)
Interval#
- Bug in Interval
__repr__
not displaying UTC offsets for Timestamp bounds. Additionally the hour, minute and second components will now be shown (GH 55015) - Bug in
IntervalIndex.factorize()
and Series.factorize() with IntervalDtype with datetime64 or timedelta64 intervals not preserving non-nanosecond units (GH 56099) - Bug in IntervalIndex.from_arrays() when passed
datetime64
ortimedelta64
arrays with mismatched resolutions constructing an invalidIntervalArray
object (GH 55714) - Bug in IntervalIndex.from_tuples() raising if subtype is a nullable extension dtype (GH 56765)
- Bug in IntervalIndex.get_indexer() with datetime or timedelta intervals incorrectly matching on integer targets (GH 47772)
- Bug in IntervalIndex.get_indexer() with timezone-aware datetime intervals incorrectly matching on a sequence of timezone-naive targets (GH 47772)
- Bug in setting values on a Series with an IntervalIndex using a slice incorrectly raising (GH 54722)
Indexing#
- Bug in DataFrame.loc() mutating a boolean indexer when DataFrame has a MultiIndex (GH 56635)
- Bug in DataFrame.loc() when setting Series with extension dtype into NumPy dtype (GH 55604)
- Bug in Index.difference() not returning a unique set of values when
other
is empty orother
is considered non-comparable (GH 55113) - Bug in setting Categorical values into a DataFrame with numpy dtypes raising
RecursionError
(GH 52927) - Fixed bug when creating new column with missing values when setting a single string value (GH 56204)
Missing#
- Bug in DataFrame.update() wasn’t updating in-place for tz-aware datetime64 dtypes (GH 56227)
MultiIndex#
- Bug in MultiIndex.get_indexer() not raising
ValueError
whenmethod
provided and index is non-monotonic (GH 53452)
I/O#
- Bug in read_csv() where
engine="python"
did not respectchunksize
arg whenskiprows
was specified (GH 56323) - Bug in read_csv() where
engine="python"
was causing aTypeError
when a callableskiprows
and a chunk size was specified (GH 55677) - Bug in read_csv() where
on_bad_lines="warn"
would write tostderr
instead of raising a Python warning; this now yields a errors.ParserWarning (GH 54296) - Bug in read_csv() with
engine="pyarrow"
wherequotechar
was ignored (GH 52266) - Bug in read_csv() with
engine="pyarrow"
whereusecols
wasn’t working with a CSV with no headers (GH 54459) - Bug in read_excel(), with
engine="xlrd"
(xls
files) erroring when the file containsNaN
orInf
(GH 54564) - Bug in read_json() not handling dtype conversion properly if
infer_string
is set (GH 56195) - Bug in DataFrame.to_excel(), with
OdsWriter
(ods
files) writing Boolean/string value (GH 54994) - Bug in DataFrame.to_hdf() and read_hdf() with
datetime64
dtypes with non-nanosecond resolution failing to round-trip correctly (GH 55622) - Bug in DataFrame.to_stata() raising for extension dtypes (GH 54671)
- Bug in read_excel() with
engine="odf"
(ods
files) when a string cell contains an annotation (GH 55200) - Bug in read_excel() with an ODS file without cached formatted cell for float values (GH 55219)
- Bug where DataFrame.to_json() would raise an
OverflowError
instead of aTypeError
with unsupported NumPy types (GH 55403)
Period#
- Bug in PeriodIndex construction when more than one of
data
,ordinal
and**fields
are passed failing to raiseValueError
(GH 55961) - Bug in Period addition silently wrapping around instead of raising
OverflowError
(GH 55503) - Bug in casting from PeriodDtype with
astype
todatetime64
or DatetimeTZDtype with non-nanosecond unit incorrectly returning with nanosecond unit (GH 55958)
Plotting#
- Bug in DataFrame.plot.box() with
vert=False
and a MatplotlibAxes
created withsharey=True
(GH 54941) - Bug in DataFrame.plot.scatter() discarding string columns (GH 56142)
- Bug in Series.plot() when reusing an
ax
object failing to raise when ahow
keyword is passed (GH 55953)
Groupby/resample/rolling#
- Bug in DataFrameGroupBy.idxmin(), DataFrameGroupBy.idxmax(), SeriesGroupBy.idxmin(), and SeriesGroupBy.idxmax() would not retain Categorical dtype when the index was a CategoricalIndex that contained NA values (GH 54234)
- Bug in DataFrameGroupBy.transform() and SeriesGroupBy.transform() when
observed=False
andf="idxmin"
orf="idxmax"
would incorrectly raise on unobserved categories (GH 54234) - Bug in DataFrameGroupBy.value_counts() and SeriesGroupBy.value_counts() could result in incorrect sorting if the columns of the DataFrame or name of the Series are integers (GH 55951)
- Bug in DataFrameGroupBy.value_counts() and SeriesGroupBy.value_counts() would not respect
sort=False
in DataFrame.groupby() and Series.groupby() (GH 55951) - Bug in DataFrameGroupBy.value_counts() and SeriesGroupBy.value_counts() would sort by proportions rather than frequencies when
sort=True
andnormalize=True
(GH 55951) - Bug in DataFrame.asfreq() and Series.asfreq() with a DatetimeIndex with non-nanosecond resolution incorrectly converting to nanosecond resolution (GH 55958)
- Bug in DataFrame.ewm() when passed
times
with non-nanoseconddatetime64
or DatetimeTZDtype dtype (GH 56262) - Bug in DataFrame.groupby() and Series.groupby() where grouping by a combination of
Decimal
and NA values would fail whensort=True
(GH 54847) - Bug in DataFrame.groupby() for DataFrame subclasses when selecting a subset of columns to apply the function to (GH 56761)
- Bug in DataFrame.resample() not respecting
closed
andlabel
arguments for BusinessDay (GH 55282) - Bug in DataFrame.resample() when resampling on a ArrowDtype of
pyarrow.timestamp
orpyarrow.duration
type (GH 55989) - Bug in DataFrame.resample() where bin edges were not correct for BusinessDay (GH 55281)
- Bug in DataFrame.resample() where bin edges were not correct for MonthBegin (GH 55271)
- Bug in DataFrame.rolling() and Series.rolling() where duplicate datetimelike indexes are treated as consecutive rather than equal with
closed='left'
andclosed='neither'
(GH 20712) - Bug in DataFrame.rolling() and Series.rolling() where either the
index
oron
column was ArrowDtype withpyarrow.timestamp
type (GH 55849)
Reshaping#
- Bug in concat() ignoring
sort
parameter when passed DatetimeIndex indexes (GH 54769) - Bug in concat() renaming Series when
ignore_index=False
(GH 15047) - Bug in merge_asof() raising
TypeError
whenby
dtype is notobject
,int64
, oruint64
(GH 22794) - Bug in merge_asof() raising incorrect error for string dtype (GH 56444)
- Bug in merge_asof() when using a Timedelta tolerance on a ArrowDtype column (GH 56486)
- Bug in merge() not raising when merging datetime columns with timedelta columns (GH 56455)
- Bug in merge() not raising when merging string columns with numeric columns (GH 56441)
- Bug in merge() not sorting for new string dtype (GH 56442)
- Bug in merge() returning columns in incorrect order when left and/or right is empty (GH 51929)
- Bug in DataFrame.melt() where an exception was raised if
var_name
was not a string (GH 55948) - Bug in DataFrame.melt() where it would not preserve the datetime (GH 55254)
- Bug in DataFrame.pivot_table() where the row margin is incorrect when the columns have numeric names (GH 26568)
- Bug in DataFrame.pivot() with numeric columns and extension dtype for data (GH 56528)
- Bug in DataFrame.stack() with
future_stack=True
would not preserve NA values in the index (GH 56573)
Sparse#
- Bug in
arrays.SparseArray.take()
when using a different fill value than the array’s fill value (GH 55181)
Other#
- DataFrame.__dataframe__() did not support pyarrow large strings (GH 56702)
- Bug in DataFrame.describe() when formatting percentiles in the resulting percentile 99.999% is rounded to 100% (GH 55765)
- Bug in api.interchange.from_dataframe() where it raised
NotImplementedError
when handling empty string columns (GH 56703) - Bug in cut() and qcut() with
datetime64
dtype values with non-nanosecond units incorrectly returning nanosecond-unit bins (GH 56101) - Bug in cut() incorrectly allowing cutting of timezone-aware datetimes with timezone-naive bins (GH 54964)
- Bug in infer_freq() and DatetimeIndex.inferred_freq() with weekly frequencies and non-nanosecond resolutions (GH 55609)
- Bug in DataFrame.apply() where passing
raw=True
ignoredargs
passed to the applied function (GH 55009) - Bug in DataFrame.from_dict() which would always sort the rows of the created DataFrame. (GH 55683)
- Bug in DataFrame.sort_index() when passing
axis="columns"
andignore_index=True
raising aValueError
(GH 56478) - Bug in rendering
inf
values inside a DataFrame with theuse_inf_as_na
option enabled (GH 55483) - Bug in rendering a Series with a MultiIndex when one of the index level’s names is 0 not having that name displayed (GH 55415)
- Bug in the error message when assigning an empty DataFrame to a column (GH 55956)
- Bug when time-like strings were being cast to ArrowDtype with
pyarrow.time64
type (GH 56463) - Fixed a spurious deprecation warning from
numba
>= 0.58.0 when passing a numpy ufunc incore.window.Rolling.apply
withengine="numba"
(GH 55247)
Contributors#
A total of 162 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
- AG
- Aaron Rahman +
- Abdullah Ihsan Secer +
- Abhijit Deo +
- Adrian D’Alessandro
- Ahmad Mustafa Anis +
- Amanda Bizzinotto
- Amith KK +
- Aniket Patil +
- Antonio Fonseca +
- Artur Barseghyan
- Ben Greiner
- Bill Blum +
- Boyd Kane
- Damian Kula
- Dan King +
- Daniel Weindl +
- Daniele Nicolodi
- David Poznik
- David Toneian +
- Dea María Léon
- Deepak George +
- Dmitriy +
- Dominique Garmier +
- Donald Thevalingam +
- Doug Davis +
- Dukastlik +
- Elahe Sharifi +
- Eric Han +
- Fangchen Li
- Francisco Alfaro +
- Gadea Autric +
- Guillaume Lemaitre
- Hadi Abdi Khojasteh
- Hedeer El Showk +
- Huanghz2001 +
- Isaac Virshup
- Issam +
- Itay Azolay +
- Itayazolay +
- Jaca +
- Jack McIvor +
- JackCollins91 +
- James Spencer +
- Jay
- Jessica Greene
- Jirka Borovec +
- JohannaTrost +
- John C +
- Joris Van den Bossche
- José Lucas Mayer +
- José Lucas Silva Mayer +
- João Andrade +
- Kai Mühlbauer
- Katharina Tielking, MD +
- Kazuto Haruguchi +
- Kevin
- Lawrence Mitchell
- Linus +
- Linus Sommer +
- Louis-Émile Robitaille +
- Luke Manley
- Lumberbot (aka Jack)
- Maggie Liu +
- MainHanzo +
- Marc Garcia
- Marco Edward Gorelli
- MarcoGorelli
- Martin Šícho +
- Mateusz Sokół
- Matheus Felipe +
- Matthew Roeschke
- Matthias Bussonnier
- Maxwell Bileschi +
- Michael Tiemann
- Michał Górny
- Molly Bowers +
- Moritz Schubert +
- NNLNR +
- Natalia Mokeeva
- Nils Müller-Wendt +
- Omar Elbaz
- Pandas Development Team
- Paras Gupta +
- Parthi
- Patrick Hoefler
- Paul Pellissier +
- Paul Uhlenbruck +
- Philip Meier
- Philippe THOMY +
- Quang Nguyễn
- Raghav
- Rajat Subhra Mukherjee
- Ralf Gommers
- Randolf Scholz +
- Richard Shadrach
- Rob +
- Rohan Jain +
- Ryan Gibson +
- Sai-Suraj-27 +
- Samuel Oranyeli +
- Sara Bonati +
- Sebastian Berg
- Sergey Zakharov +
- Shyamala Venkatakrishnan +
- StEmGeo +
- Stefanie Molin
- Stijn de Gooijer +
- Thiago Gariani +
- Thomas A Caswell
- Thomas Baumann +
- Thomas Guillet +
- Thomas Lazarus +
- Thomas Li
- Tim Hoffmann
- Tim Swast
- Tom Augspurger
- Toro +
- Torsten Wörtwein
- Ville Aikas +
- Vinita Parasrampuria +
- Vyas Ramasubramani +
- William Andrea
- William Ayd
- Willian Wang +
- Xiao Yuan
- Yao Xiao
- Yves Delley
- Zemux1613 +
- Ziad Kermadi +
- aaron-robeson-8451 +
- aram-cinnamon +
- caneff +
- ccccjone +
- chris-caballero +
- cobalt
- color455nm +
- denisrei +
- dependabot[bot]
- jbrockmendel
- jfadia +
- johanna.trost +
- kgmuzungu +
- mecopur +
- mhb143 +
- morotti +
- mvirts +
- omar-elbaz
- paulreece
- pre-commit-ci[bot]
- raj-thapa
- rebecca-palmer
- rmhowe425
- rohanjain101
- shiersansi +
- smij720
- srkds +
- taytzehao
- torext
- vboxuser +
- xzmeng +
- yashb +