Category of manifolds (original) (raw)

Property Value
dbo:abstract In mathematics, the category of manifolds, often denoted Manp, is the category whose objects are manifolds of smoothness class Cp and whose morphisms are p-times continuously differentiable maps. This is a category because the composition of two Cp maps is again continuous and of class Cp. One is often interested only in Cp-manifolds modeled on spaces in a fixed category A, and the category of such manifolds is denoted Manp(A). Similarly, the category of Cp-manifolds modeled on a fixed space E is denoted Manp(E). One may also speak of the category of smooth manifolds, Man∞, or the category of analytic manifolds, Manω. (en) 数学の一分野である圏論において Cp-級多様体の圏(たようたいのけん、英: category of manifolds)Manp は、すべての Cp-級可微分多様体を対象とし、すべての Cp-級可微分写像(p-回連続的微分可能写像を射とする圏である。二つの Cp-級写像の合成はやはり Cp-級となるから、確かにこれで圏が得られている。 しばしば特定の圏 A に属する対象をモデルに持つ多様体(A における多様体対象)のみを考えたいという場合が生じる。そのような限定された意味の多様体の成す圏は Manp(A) のように書き表す。同様に特定の空間 E の上で定められる多様体の成す圏を Manp(E) と書く。 滑らかな多様体の圏 Man∞ やの圏 Manω も同様に考えられる。 (ja)
dbo:wikiPageExternalLink https://archive.org/details/introductiontoma00lwtu_506
dbo:wikiPageID 10059981 (xsd:integer)
dbo:wikiPageLength 4618 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1111695698 (xsd:integer)
dbo:wikiPageWikiLink dbr:Pushforward_(differential) dbr:Analytic_manifold dbr:Mathematics dbr:Function_(mathematics) dbr:Function_composition dbr:Morphism dbr:Concrete_category dbr:Equivalence_class dbr:Smooth_function dbr:Comma_category dbr:Functor dbr:Category_(category_theory) dbr:Category_of_sets dbr:Topology dbc:Manifolds dbr:Forgetful_functor dbr:Atlas_(topology) dbr:Differentiable_manifold dbr:Differentiable_map dbc:Categories_in_category_theory dbr:Manifold dbr:Category_of_topological_spaces dbr:Set_(mathematics) dbr:Category_of_pointed_spaces dbr:Object_(category_theory)
dbp:wikiPageUsesTemplate dbt:Cite_book dbt:GBurl dbt:Cattheory-stub
dct:subject dbc:Manifolds dbc:Categories_in_category_theory
gold:hypernym dbr:Category
rdf:type yago:WikicatManifolds yago:Artifact100021939 yago:Conduit103089014 yago:Manifold103717750 yago:Object100002684 yago:Passage103895293 yago:PhysicalEntity100001930 yago:Pipe103944672 yago:YagoGeoEntity yago:YagoPermanentlyLocatedEntity dbo:TelevisionStation yago:Tube104493505 yago:Way104564698 yago:Whole100003553
rdfs:comment 数学の一分野である圏論において Cp-級多様体の圏(たようたいのけん、英: category of manifolds)Manp は、すべての Cp-級可微分多様体を対象とし、すべての Cp-級可微分写像(p-回連続的微分可能写像を射とする圏である。二つの Cp-級写像の合成はやはり Cp-級となるから、確かにこれで圏が得られている。 しばしば特定の圏 A に属する対象をモデルに持つ多様体(A における多様体対象)のみを考えたいという場合が生じる。そのような限定された意味の多様体の成す圏は Manp(A) のように書き表す。同様に特定の空間 E の上で定められる多様体の成す圏を Manp(E) と書く。 滑らかな多様体の圏 Man∞ やの圏 Manω も同様に考えられる。 (ja) In mathematics, the category of manifolds, often denoted Manp, is the category whose objects are manifolds of smoothness class Cp and whose morphisms are p-times continuously differentiable maps. This is a category because the composition of two Cp maps is again continuous and of class Cp. One is often interested only in Cp-manifolds modeled on spaces in a fixed category A, and the category of such manifolds is denoted Manp(A). Similarly, the category of Cp-manifolds modeled on a fixed space E is denoted Manp(E). (en)
rdfs:label Category of manifolds (en) 多様体の圏 (ja)
owl:sameAs freebase:Category of manifolds yago-res:Category of manifolds wikidata:Category of manifolds dbpedia-ja:Category of manifolds dbpedia-vi:Category of manifolds https://global.dbpedia.org/id/4g8v7
prov:wasDerivedFrom wikipedia-en:Category_of_manifolds?oldid=1111695698&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Category_of_manifolds
is dbo:wikiPageWikiLink of dbr:Lie_groupoid dbr:Microbundle dbr:Differentiable_stack dbr:Grothendieck_group dbr:Groupoid_object dbr:Category_(mathematics)
is foaf:primaryTopic of wikipedia-en:Category_of_manifolds