Del Pezzo surface (original) (raw)
In mathematics, a del Pezzo surface or Fano surface is a two-dimensional Fano variety, in other words a non-singular projective algebraic surface with ample anticanonical divisor class. They are in some sense the opposite of surfaces of general type, whose canonical class is big. They are named for Pasquale del Pezzo who studied the surfaces with the more restrictive condition that they have a very ample anticanonical divisor class, or in his language the surfaces with a degree n embedding in n-dimensional projective space, which are the del Pezzo surfaces of degree at least 3.
Property | Value |
---|---|
dbo:abstract | In mathematics, a del Pezzo surface or Fano surface is a two-dimensional Fano variety, in other words a non-singular projective algebraic surface with ample anticanonical divisor class. They are in some sense the opposite of surfaces of general type, whose canonical class is big. They are named for Pasquale del Pezzo who studied the surfaces with the more restrictive condition that they have a very ample anticanonical divisor class, or in his language the surfaces with a degree n embedding in n-dimensional projective space, which are the del Pezzo surfaces of degree at least 3. (en) 대수기하학에서 델 페초 곡면(del Pezzo曲面, 영어: del Pezzo surface)은 사영 평면의 점들을 부풀려 얻을 수 있는 대수 곡면의 한 종류다. (ko) In de wiskunde, is een Del Pezzo-oppervlak (of ook Fano-oppervlak) een twee-dimensionale Fano-variëteit, met andere woorden een niet-singuliere projectieve algebraïsch oppervlak met . Ze zijn in zekere zin het tegenovergestelde van , die een ruimere canonieke klasse hebben. Ze zijn vernoemd naar , die deze oppervlakken bestudeerde onder de meer beperkende voorwaarde dat zij een zeer ruime anti-canonieke delerklasse hebben, of in de taal van del Pezzo de oppervlakken met een graad n ingebed in de n-dimensionale projectieve ruimte, de del Pezzo-oppervlakken van ten minste graad 3. (nl) |
dbo:wikiPageExternalLink | http://www.cambridge.org/catalogue/catalogue.asp%3Fisbn=9780521832076 |
dbo:wikiPageID | 732323 (xsd:integer) |
dbo:wikiPageLength | 9151 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1115604519 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Cambridge_University_Press dbr:Algebraic_surface dbr:Cubic_surface dbr:Intersection_number dbr:Mathematics dbr:Quartic_plane_curve dbr:M-theory dbr:Fano_variety dbr:Pasquale_del_Pezzo dbr:Hirzebruch_surface dbr:Surfaces_of_general_type dbc:Algebraic_surfaces dbc:Complex_surfaces dbr:Bitangents_of_a_quartic dbr:Blowing_up dbr:Coble_surface dbr:Blowing_down dbr:Unimodular_lattice dbr:Veronese_embedding dbr:Segre_surface dbr:Two-dimensional dbr:Ample_vector_bundle dbr:Divisor_class dbr:Conic dbr:Anticanonical |
dbp:wikiPageUsesTemplate | dbt:Authority_control dbt:Citation dbt:Harv dbt:No_footnotes |
dcterms:subject | dbc:Algebraic_surfaces dbc:Complex_surfaces |
gold:hypernym | dbr:Variety |
rdf:type | owl:Thing dbo:Grape yago:WikicatComplexSurfaces yago:Artifact100021939 yago:Object100002684 yago:PhysicalEntity100001930 yago:Surface104362025 yago:Whole100003553 yago:WikicatAlgebraicSurfaces yago:WikicatSurfaces |
rdfs:comment | In mathematics, a del Pezzo surface or Fano surface is a two-dimensional Fano variety, in other words a non-singular projective algebraic surface with ample anticanonical divisor class. They are in some sense the opposite of surfaces of general type, whose canonical class is big. They are named for Pasquale del Pezzo who studied the surfaces with the more restrictive condition that they have a very ample anticanonical divisor class, or in his language the surfaces with a degree n embedding in n-dimensional projective space, which are the del Pezzo surfaces of degree at least 3. (en) 대수기하학에서 델 페초 곡면(del Pezzo曲面, 영어: del Pezzo surface)은 사영 평면의 점들을 부풀려 얻을 수 있는 대수 곡면의 한 종류다. (ko) In de wiskunde, is een Del Pezzo-oppervlak (of ook Fano-oppervlak) een twee-dimensionale Fano-variëteit, met andere woorden een niet-singuliere projectieve algebraïsch oppervlak met . Ze zijn in zekere zin het tegenovergestelde van , die een ruimere canonieke klasse hebben. Ze zijn vernoemd naar , die deze oppervlakken bestudeerde onder de meer beperkende voorwaarde dat zij een zeer ruime anti-canonieke delerklasse hebben, of in de taal van del Pezzo de oppervlakken met een graad n ingebed in de n-dimensionale projectieve ruimte, de del Pezzo-oppervlakken van ten minste graad 3. (nl) |
rdfs:label | Del Pezzo surface (en) 델 페초 곡면 (ko) Del Pezzo-oppervlak (nl) |
owl:sameAs | freebase:Del Pezzo surface yago-res:Del Pezzo surface http://d-nb.info/gnd/4229638-9 wikidata:Del Pezzo surface dbpedia-ko:Del Pezzo surface dbpedia-nl:Del Pezzo surface https://global.dbpedia.org/id/yByi |
prov:wasDerivedFrom | wikipedia-en:Del_Pezzo_surface?oldid=1115604519&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Del_Pezzo_surface |
is dbo:wikiPageDisambiguates of | dbr:Del_Pezzo |
is dbo:wikiPageRedirects of | dbr:Del_pezzo_surface dbr:Del_Pezzo_double_plane dbr:Del_Pezzo_surfaces |
is dbo:wikiPageWikiLink of | dbr:Enriques–Kodaira_classification dbr:List_of_algebraic_geometry_topics dbr:List_of_complex_and_algebraic_surfaces dbr:Algebraic_surface dbr:Cubic_surface dbr:List_of_manifolds dbr:Conic_bundle dbr:Complex_projective_plane dbr:K-stability_of_Fano_varieties dbr:Rational_surface dbr:Cayley's_nodal_cubic_surface dbr:Fano_variety dbr:Del_Pezzo dbr:Del_pezzo_surface dbr:Pasquale_del_Pezzo dbr:K3_surface dbr:Birational_geometry dbr:Bitangents_of_a_quartic dbr:Segre_surface dbr:Semiorthogonal_decomposition dbr:Sasakian_manifold dbr:Del_Pezzo_double_plane dbr:Del_Pezzo_surfaces |
is foaf:primaryTopic of | wikipedia-en:Del_Pezzo_surface |