dbo:abstract |
In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E8 lattice and the Leech lattice are two famous examples. (en) 유니모듈러 격자(영어: unimodular lattice)는 행렬식이 ±1인 격자이다. (ko) In de wiskunde is een unimodulair rooster een rooster met determinant 1 of −1. Twee bekende voorbeelden van een unimodulair rooster zijn het E8-rooster en het Leech-rooster. (nl) Унімодулярна ґратка — ціла ґратка з визначником . Останнє еквівалентне тому, що об'єм фундаментальної області ґратки дорівнює . (uk) Унимодулярная решётка — целая решётка с определителем .Последнее эквивалентно тому, что объём фундаментальной области решётки равен . (ru) |
dbo:wikiPageExternalLink |
https://archive.org/details/spherepackingsla0000conw_b8u0 https://archive.org/details/courseinarithmet00serr https://web.archive.org/web/20070928015916/http:/www-fourier.ujf-grenoble.fr/PREP/html/a332/a332.html http://www.research.att.com/%7Enjas/lattices/unimodular.html http://www-fourier.ujf-grenoble.fr/PREP/html/a332/a332.html |
dbo:wikiPageID |
1648605 (xsd:integer) |
dbo:wikiPageLength |
13906 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1124094293 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Module_(mathematics) dbr:Determinant dbr:Vector_space dbr:Volume dbr:Donaldson's_theorem dbr:Dynkin_diagram dbr:E8_lattice dbr:E8_manifold dbr:Reciprocal_lattice dbc:Quadratic_forms dbr:Matrix_(mathematics) dbr:Smooth_structure dbr:Geometry dbc:Lattice_points dbr:Modular_form dbr:Theta_function dbr:Ergebnisse_der_Mathematik_und_ihrer_Grenzgebiete dbr:Leech_lattice dbr:Signature_(quadratic_form) dbr:Fundamental_domain dbr:Mathematics_of_Computation dbr:Lattice_(group) dbr:4-manifold dbr:Euclidean_space dbr:Dimension_(vector_space) dbr:Graduate_Texts_in_Mathematics dbr:Gram_matrix dbr:Isomorphism dbr:Mathematical_proof dbr:Symmetric_bilinear_form dbr:Smith-Minkowski-Siegel_mass_formula dbr:Manifold dbr:Poincaré_conjecture dbr:Free_abelian_group dbr:Free_module dbr:Group_theory dbr:If_and_only_if dbr:Integer dbr:Michael_Freedman dbr:Neil_Sloane dbr:Real_number dbr:Smooth_manifold dbr:Niemeier_lattice dbr:Simply_connected dbr:Springer-Verlag dbr:Oriented dbr:Level_of_a_modular_form dbr:Cohomology_group |
dbp:formalname |
Number of n-dimensional unimodular lattice (en) |
dbp:name |
Number of n-dimensional unimodular lattices (en) |
dbp:sequencenumber |
A005134 (en) |
dbp:wikiPageUsesTemplate |
dbt:Citation dbt:Distinguish dbt:Harv dbt:Harvtxt dbt:OEIS_el dbt:Reflist dbt:Short_description |
dct:subject |
dbc:Quadratic_forms dbc:Lattice_points |
gold:hypernym |
dbr:Lattice |
rdf:type |
owl:Thing dbo:ArchitecturalStructure yago:Abstraction100002137 yago:Form106290637 yago:LanguageUnit106284225 yago:Part113809207 yago:Relation100031921 yago:Word106286395 yago:WikicatQuadraticForms |
rdfs:comment |
In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E8 lattice and the Leech lattice are two famous examples. (en) 유니모듈러 격자(영어: unimodular lattice)는 행렬식이 ±1인 격자이다. (ko) In de wiskunde is een unimodulair rooster een rooster met determinant 1 of −1. Twee bekende voorbeelden van een unimodulair rooster zijn het E8-rooster en het Leech-rooster. (nl) Унімодулярна ґратка — ціла ґратка з визначником . Останнє еквівалентне тому, що об'єм фундаментальної області ґратки дорівнює . (uk) Унимодулярная решётка — целая решётка с определителем .Последнее эквивалентно тому, что объём фундаментальной области решётки равен . (ru) |
rdfs:label |
유니모듈러 격자 (ko) Unimodulair rooster (nl) Unimodular lattice (en) Унимодулярная решётка (ru) Унімодулярна ґратка (uk) |
owl:differentFrom |
dbr:Modular_lattice |
owl:sameAs |
freebase:Unimodular lattice yago-res:Unimodular lattice wikidata:Unimodular lattice dbpedia-ko:Unimodular lattice dbpedia-nl:Unimodular lattice dbpedia-ru:Unimodular lattice dbpedia-uk:Unimodular lattice https://global.dbpedia.org/id/2bWtk |
prov:wasDerivedFrom |
wikipedia-en:Unimodular_lattice?oldid=1124094293&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Unimodular_lattice |
is dbo:wikiPageDisambiguates of |
dbr:Unimodular |
is dbo:wikiPageRedirects of |
dbr:Unimodular_symmetric_bilinear_form dbr:Self-dual_lattice dbr:Even_lattice dbr:Type_II_lattice dbr:Type_I_lattice |
is dbo:wikiPageWikiLink of |
dbr:En_(Lie_algebra) dbr:Enriques_surface dbr:Enriques–Kodaira_classification dbr:Regular_number dbr:Del_Pezzo_surface dbr:Donaldson's_theorem dbr:E8_lattice dbr:Integer_lattice dbr:List_of_number_theory_topics dbr:10 dbr:Gabriele_Nebe dbr:Modular_form dbr:Conway_group_Co1 dbr:Leech_lattice dbr:Dolgachev_surface dbr:Lattice_(group) dbr:Rational_surface dbr:23_(number) dbr:8 dbr:24_(number) dbr:26_(number) dbr:4-manifold dbr:E8_(mathematics) dbr:Hans-Volker_Niemeier dbr:K3_surface dbr:Smith–Minkowski–Siegel_mass_formula dbr:Unimodular dbr:Niemeier_lattice dbr:II25,1 dbr:Exceptional_object dbr:Theta_function_of_a_lattice dbr:Siegel_theta_series dbr:Rokhlin's_theorem dbr:Unimodular_symmetric_bilinear_form dbr:Self-dual_lattice dbr:Even_lattice dbr:Type_II_lattice dbr:Type_I_lattice |
is owl:differentFrom of |
dbr:Modular_lattice |
is foaf:primaryTopic of |
wikipedia-en:Unimodular_lattice |