K3 surface (original) (raw)
In der Mathematik sind K3-Flächen gewisse komplexe Flächen. Ein klassisches Beispiel ist die Lösungsmenge der Gleichung im dreidimensionalen projektiven Raum. Die Bezeichnung „K3-Fläche“ geht auf André Weil zurück, „in honor of Kummer, Kähler, Kodaira, and the beautiful K2 mountain in Kashmir“.
Property | Value |
---|---|
dbo:abstract | In der Mathematik sind K3-Flächen gewisse komplexe Flächen. Ein klassisches Beispiel ist die Lösungsmenge der Gleichung im dreidimensionalen projektiven Raum. Die Bezeichnung „K3-Fläche“ geht auf André Weil zurück, „in honor of Kummer, Kähler, Kodaira, and the beautiful K2 mountain in Kashmir“. (de) In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface in complex projective 3-space. Together with two-dimensional compact complex tori, K3 surfaces are the Calabi–Yau manifolds (and also the hyperkähler manifolds) of dimension two. As such, they are at the center of the classification of algebraic surfaces, between the positively curved del Pezzo surfaces (which are easy to classify) and the negatively curved surfaces of general type (which are essentially unclassifiable). K3 surfaces can be considered the simplest algebraic varieties whose structure does not reduce to curves or abelian varieties, and yet where a substantial understanding is possible. A complex K3 surface has real dimension 4, and it plays an important role in the study of smooth 4-manifolds. K3 surfaces have been applied to Kac–Moody algebras, mirror symmetry and string theory. It can be useful to think of complex algebraic K3 surfaces as part of the broader family of complex analytic K3 surfaces. Many other types of algebraic varieties do not have such non-algebraic deformations. (en) En géométrie différentielle ou algébrique, les surfaces K3 sont les variétés de Calabi-Yau de plus petite dimension différentes des tores. Ce sont des variétés complexes de dimension complexe 2 compactes et kählériennes. Les surfaces K3 possèdent en outre la propriété d'être les seules variétés de Calabi-Yau distincte du 4-tore T4 d'un point de vue topologique ou différentiel. Cependant, en tant que variété complexe, il y a un nombre infini de surfaces K3 non isomorphes. On peut notamment les distinguer par le biais du (en). André Weil (1958) les nomma en l'honneur des trois géomètres algébristes Kummer, Kähler et Kodaira, et de la montagne K2 au Karakoram. (fr) 数学において、K3曲面 (英: K3 surface) とは、不正則数が 0 で、自明な標準バンドルを持っているという複素解析的、もしくは代数的な滑らかな最小完備曲面をいう。 エンリケス・小平の曲面の分類では、それらは小平次元がゼロの曲面の 4つのクラスのうちの一つである。 K3曲面は、とともに 2次元のカラビ・ヤウ多様体である。ほとんどの複素K3曲面は代数的ではない。このことは、K3曲面を多項式により定義される曲面として射影空間へ埋め込むことができないことを意味する。K3曲面はラマヌジャンが1910年代に発見したが未発表に終わり、後に が再発見して、3人の代数幾何学者(クンマー、ケーラー、小平邦彦)と当時未踏峰だったK2に因みK3曲面と名付けた。 (ja) 대수기하학과 미분기하학에서 K3 곡면(K3曲面, 영어: K3 surface)은 원환면이 아닌 2차원 칼라비-야우 다양체이다. (ko) Een K3-oppervlak is in de algebraïsche meetkunde en de differentiaalmeetkunde, beide deelgebieden van de wiskunde, een complex of algebraïsch, glad, volledig minimaaloppervlak dat is en een triviale kanonieke bundel heeft. Het K3-oppervlak heeft zijn naam te danken aan André Weil, ter ere van de drie meetkundigen Ernst Kummer, Erich Kähler en Kunihiko Kodaira. In de Enriques-Kodaira-classificatie van oppervlakken vormen zij een van de 5 klassen van oppervlakken met Kodaira-dimensie 0. (nl) K3-поверхность есть связная односвязная компактная (то есть комплексное многообразие комплексной размерности два), допускающая нигде не вырожденную голоморфную дифференциальную форму степени два. В алгебраической геометрии, где рассматриваются многообразия над полями иными, нежели комплексные числа, K3-поверхностью называется алгебраическая поверхность с тривиальным , не допускающая алгебраических 1-форм. (ru) A superfície de Kummer se refere à contribuição dada pelo matemático alemão para a geometria. Foi muito mais tarde encontrada por Eddington relacionada com a teoria de Dirac sobre o elétron. (pt) 在數學領域的代數幾何及複流形理論中,K3曲面是一類重要的緊複曲面,在此「曲面」係指複二維,視作實流形則為四維。 K3曲面與二維構成二維的卡拉比-丘流形。複幾何所探討的K3曲面通常不是代數曲面;然而這類曲面首先出現於代數幾何,並以恩斯特·庫默爾、與小平邦彥三位姓氏縮寫為 K 的代數幾何學家命名,也與1950年代被命名的K2峰相映成趣。 (zh) |
dbo:thumbnail | wiki-commons:Special:FilePath/K3_surface.png?width=300 |
dbo:wikiPageExternalLink | http://mathematica.sns.it/media/volumi/477/Opere%20matematiche%20I.pdf http://web.math.ucsb.edu/~drm/manuscripts/cortona.pdf http://www.grdb.co.uk/forms/k3 https://magma.maths.usyd.edu.au/magma/handbook/text/1407 http://mathematica.sns.it/opere/479/ http://www.math.polytechnique.fr/~voisin/Articlesweb/Exp.981.C.Voisin.pdf https://www.math.uni-bonn.de/people/huybrech/K3Global.pdf http://projecteuclid.org/euclid.em/1175789798 http://www.numdam.org/item%3Fid=ASENS_1975_4_8_2_235_0 http://www.numdam.org/item%3Fid=SB_1982-1983__25__217_0 http://www.numdam.org/item/AST_1985__126_/ |
dbo:wikiPageID | 646116 (xsd:integer) |
dbo:wikiPageLength | 34752 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1060370187 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Projective_plane dbr:Quartic_surface dbr:Enriques_surface dbr:Enriques–Kodaira_classification dbr:Umbral_moonshine dbr:David_Mumford dbr:Algebraic_surface dbr:Algebraically_closed_field dbr:Homeomorphic dbr:Hyperkähler_manifold dbr:Betti_number dbr:Resolution_of_singularities dbr:Cup_product dbr:David_R._Morrison_(mathematician) dbr:Del_Pezzo_surface dbr:E8_lattice dbr:Indefinite_orthogonal_group dbr:Inventiones_Mathematicae dbr:Jacobian_ideal dbr:Jacobian_variety dbr:Weighted_projective_space dbr:Quasi-projective dbc:Differential_geometry dbc:String_theory dbr:Connected_component_(topology) dbr:Mathematics dbr:Genus_(mathematics) dbr:Nef_line_bundle dbr:Normal_subgroup dbr:Period_mapping dbr:Tangent_bundle dbr:Quadric_(algebraic_geometry) dbr:GAGA dbr:Branched_covering dbr:Mirror_symmetry_(string_theory) dbr:Cone_of_curves dbr:Connected_sum dbr:Convex_cone dbr:Calabi_conjecture dbr:Calabi–Yau_manifold dbr:String_theory dbr:Commensurability_(group_theory) dbr:Compactification_(physics) dbr:Complex_manifold dbr:Complex_projective_space dbr:Yum-Tong_Siu dbr:Zariski_open dbr:Fedor_Bogomolov dbr:Friedrich_Schur dbr:Fundamental_domain dbr:Kummer_surface dbr:Picard_group dbr:Mathieu_group_M24 dbr:Hausdorff_space dbr:Irregularity_of_a_surface dbr:Linear_system_of_divisors dbr:Tate_conjecture dbr:Supersingular_K3_surface dbr:Poincaré_duality dbr:Algebraic_curve dbr:American_Mathematical_Society dbr:Ample_line_bundle dbr:4-manifold dbr:Erich_Kähler dbr:Ernst_Kummer dbr:Federigo_Enriques dbr:Field_(mathematics) dbr:Francesco_Severi dbr:Abelian_varieties dbr:Basepoint-free dbr:Kac–Moody_algebra dbr:Kobayashi_metric dbr:String_duality dbr:Projective_variety dbr:Proper_morphism dbr:Reflection_(mathematics) dbr:Intersection_theory dbr:Jean-Pierre_Serre dbr:Hyperplane dbr:Arthur_Cayley dbr:Abelian_variety dbc:Algebraic_surfaces dbc:Complex_surfaces dbr:Characteristic_(algebra) dbr:Chern_class dbr:John_Morgan_(mathematician) dbr:K2 dbr:Kashmir dbr:Coherent_sheaf_cohomology dbr:Hodge_index_theorem dbr:Hodge_structure dbr:Hodge_theory dbr:Torelli_theorem dbr:Moduli_space dbr:Symmetric_bilinear_form dbr:Diffeomorphic dbr:Differential_form dbr:Springer_Nature dbr:Igor_Shafarevich dbr:Ilya_Piatetski-Shapiro dbr:Kodaira_dimension dbr:Kunihiko_Kodaira dbr:Michael_Freedman dbr:Michael_Rapoport dbr:Orthogonal_complement dbr:Orthogonal_group dbr:Canonical_bundle dbr:Shigeru_Mukai dbr:Shing-Tung_Yau dbr:Klaus_Hulek dbr:Société_Mathématique_de_France dbr:Shimura_variety dbr:Signature_(topology) dbr:Unimodular_lattice dbr:Euler_characteristic dbr:Complex_tori dbr:Rational_curve dbr:Exact_sequence dbr:Finitely_generated_abelian_group dbr:Smooth_scheme dbr:Serre_duality dbr:Singular_point_of_an_algebraic_variety dbr:Divisor_class_group dbr:Riemann–Roch_theorem_for_surfaces dbr:Canonical_singularities dbr:Du_Val_singularities dbr:Kähler_metric dbr:L-adic_cohomology dbr:Linearly_equivalent dbr:Properly_discontinuous dbr:Magma_computer_algebra_system dbr:Simply_connected dbr:Springer-Verlag dbr:Big_line_bundle dbr:Oriented dbr:Elliptic_fibration dbr:Ricci-flat dbr:Viacheslav_Nikulin dbr:General_type dbr:Bertini's_theorem dbr:Coarse_moduli_space dbr:Unirational dbr:Uniruled_variety dbr:Exponential_sequence dbr:Holomorphic_Euler_characteristic dbr:File:K3_surface.png |
dbp:first | A.N. (en) |
dbp:id | k/k055040 (en) |
dbp:last | Rudakov (en) |
dbp:quote | Dans la seconde partie de mon rapport, il s'agit des variétés kählériennes dites K3, ainsi nommées en l'honneur de Kummer, Kähler, Kodaira et de la belle montagne K2 au Cachemire. (en) In the second part of my report, we deal with the Kähler varieties known as K3, named in honor of Kummer, Kähler, Kodaira and of the beautiful mountain K2 in Kashmir. (en) |
dbp:source | André , describing the reason for the name "K3 surface" (en) |
dbp:title | K3 surface (en) |
dbp:width | 30.0 |
dbp:wikiPageUsesTemplate | dbt:Springer dbt:Citation dbt:Harvtxt dbt:Quotebox dbt:Reflist dbt:Short_description dbt:Hodge_diamond dbt:String_theory_topics |
dcterms:subject | dbc:Differential_geometry dbc:String_theory dbc:Algebraic_surfaces dbc:Complex_surfaces |
gold:hypernym | dbr:Surface |
rdf:type | dbo:Bone yago:WikicatComplexSurfaces yago:Artifact100021939 yago:Object100002684 yago:PhysicalEntity100001930 yago:Surface104362025 yago:Whole100003553 yago:WikicatAlgebraicSurfaces |
rdfs:comment | In der Mathematik sind K3-Flächen gewisse komplexe Flächen. Ein klassisches Beispiel ist die Lösungsmenge der Gleichung im dreidimensionalen projektiven Raum. Die Bezeichnung „K3-Fläche“ geht auf André Weil zurück, „in honor of Kummer, Kähler, Kodaira, and the beautiful K2 mountain in Kashmir“. (de) 数学において、K3曲面 (英: K3 surface) とは、不正則数が 0 で、自明な標準バンドルを持っているという複素解析的、もしくは代数的な滑らかな最小完備曲面をいう。 エンリケス・小平の曲面の分類では、それらは小平次元がゼロの曲面の 4つのクラスのうちの一つである。 K3曲面は、とともに 2次元のカラビ・ヤウ多様体である。ほとんどの複素K3曲面は代数的ではない。このことは、K3曲面を多項式により定義される曲面として射影空間へ埋め込むことができないことを意味する。K3曲面はラマヌジャンが1910年代に発見したが未発表に終わり、後に が再発見して、3人の代数幾何学者(クンマー、ケーラー、小平邦彦)と当時未踏峰だったK2に因みK3曲面と名付けた。 (ja) 대수기하학과 미분기하학에서 K3 곡면(K3曲面, 영어: K3 surface)은 원환면이 아닌 2차원 칼라비-야우 다양체이다. (ko) Een K3-oppervlak is in de algebraïsche meetkunde en de differentiaalmeetkunde, beide deelgebieden van de wiskunde, een complex of algebraïsch, glad, volledig minimaaloppervlak dat is en een triviale kanonieke bundel heeft. Het K3-oppervlak heeft zijn naam te danken aan André Weil, ter ere van de drie meetkundigen Ernst Kummer, Erich Kähler en Kunihiko Kodaira. In de Enriques-Kodaira-classificatie van oppervlakken vormen zij een van de 5 klassen van oppervlakken met Kodaira-dimensie 0. (nl) K3-поверхность есть связная односвязная компактная (то есть комплексное многообразие комплексной размерности два), допускающая нигде не вырожденную голоморфную дифференциальную форму степени два. В алгебраической геометрии, где рассматриваются многообразия над полями иными, нежели комплексные числа, K3-поверхностью называется алгебраическая поверхность с тривиальным , не допускающая алгебраических 1-форм. (ru) A superfície de Kummer se refere à contribuição dada pelo matemático alemão para a geometria. Foi muito mais tarde encontrada por Eddington relacionada com a teoria de Dirac sobre o elétron. (pt) 在數學領域的代數幾何及複流形理論中,K3曲面是一類重要的緊複曲面,在此「曲面」係指複二維,視作實流形則為四維。 K3曲面與二維構成二維的卡拉比-丘流形。複幾何所探討的K3曲面通常不是代數曲面;然而這類曲面首先出現於代數幾何,並以恩斯特·庫默爾、與小平邦彥三位姓氏縮寫為 K 的代數幾何學家命名,也與1950年代被命名的K2峰相映成趣。 (zh) In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface in complex projective 3-space. (en) En géométrie différentielle ou algébrique, les surfaces K3 sont les variétés de Calabi-Yau de plus petite dimension différentes des tores. Ce sont des variétés complexes de dimension complexe 2 compactes et kählériennes. Les surfaces K3 possèdent en outre la propriété d'être les seules variétés de Calabi-Yau distincte du 4-tore T4 d'un point de vue topologique ou différentiel. Cependant, en tant que variété complexe, il y a un nombre infini de surfaces K3 non isomorphes. On peut notamment les distinguer par le biais du (en). (fr) |
rdfs:label | K3-Fläche (de) K3 (géométrie) (fr) K3 surface (en) K3 곡면 (ko) K3-oppervlak (nl) K3曲面 (ja) K3 (geometria) (pt) K3-поверхность (ru) K3曲面 (zh) |
owl:sameAs | freebase:K3 surface yago-res:K3 surface wikidata:K3 surface dbpedia-de:K3 surface dbpedia-fr:K3 surface dbpedia-ja:K3 surface dbpedia-ko:K3 surface dbpedia-nl:K3 surface dbpedia-pt:K3 surface dbpedia-ru:K3 surface dbpedia-zh:K3 surface https://global.dbpedia.org/id/tQJ2 |
prov:wasDerivedFrom | wikipedia-en:K3_surface?oldid=1060370187&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/K3_surface.png |
foaf:isPrimaryTopicOf | wikipedia-en:K3_surface |
is dbo:wikiPageRedirects of | dbr:K3_(surface) dbr:K3_manifold |
is dbo:wikiPageWikiLink of | dbr:Quartic_surface dbr:Scalar_curvature dbr:Enriques_surface dbr:Enriques–Kodaira_classification dbr:List_of_algebraic_geometry_topics dbr:List_of_complex_and_algebraic_surfaces dbr:List_of_differential_geometry_topics dbr:Umbral_moonshine dbr:Projective_bundle dbr:David_Mumford dbr:Algebraic_surface dbr:Hyperkähler_manifold dbr:Richard_Thomas_(mathematician) dbr:Derived_noncommutative_algebraic_geometry dbr:Index_of_physics_articles_(K) dbr:List_of_manifolds dbr:K3 dbr:Ruth_Lyttle_Satter_Prize_in_Mathematics dbr:Mirror_symmetry_(string_theory) dbr:Monstrous_moonshine dbr:SYZ_conjecture dbr:Calabi–Yau_manifold dbr:Complex_geometry dbr:Complex_projective_space dbr:Fedor_Bogomolov dbr:Friedrich_Schur dbr:Kummer_surface dbr:Leray_spectral_sequence dbr:Mathieu_group_M24 dbr:Tom_Bridgeland dbr:Galina_Tyurina dbr:Miranda_Cheng dbr:Tate_conjecture dbr:Supersingular_K3_surface dbr:24_(number) dbr:4-manifold dbr:Daniel_Huybrechts dbr:Erich_Kähler dbr:Federigo_Enriques dbr:Diagonal_form dbr:Gravitational_instanton dbr:Hilbert_modular_variety dbr:Hitchin–Thorpe_inequality dbr:Italian_school_of_algebraic_geometry dbr:Kobayashi_metric dbr:Kodaira_surface dbr:Projective_variety dbr:Rational_point dbr:Hilbert_scheme dbr:Hypercomplex_manifold dbr:K2 dbr:Coherent_sheaf dbr:Eguchi–Hanson_space dbr:Einstein_manifold dbr:Hodge_structure dbr:Hodge_theory dbr:Homological_mirror_symmetry dbr:Torelli_theorem dbr:Moduli_space dbr:Igor_Shafarevich dbr:Ilya_Piatetski-Shapiro dbr:Kodaira_dimension dbr:Kunihiko_Kodaira dbr:Kähler_manifold dbr:Michael_Artin dbr:Michael_Atiyah dbr:Orbifold dbr:Shigeru_Mukai dbr:Viacheslav_V._Nikulin dbr:List_of_string_theory_topics dbr:Vojta's_conjecture dbr:Scientific_phenomena_named_after_people dbr:Surface_of_general_type dbr:Serre_spectral_sequence dbr:Noetherian_scheme dbr:Rokhlin's_theorem dbr:K3_(surface) dbr:K3_manifold |
is foaf:primaryTopic of | wikipedia-en:K3_surface |