Ex-tangential quadrilateral (original) (raw)

About DBpedia

Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности (вне четырёхугольника). Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис. Это биссектрисы двух внутренних углов противоположных углов четырёхугольника, биссектрисы внешних углов двух других вершин, и биссектрисы внешних углов в точках пересечения продолжений противоположных сторон (смотрите рисунок справа, указанные продолжения сторон проведены пунктиром). Внеописанный четырёхугольник тесно связан с описанным четырёхугольником (у которого четыре стороны касаются окружности).

thumbnail

Property Value
dbo:abstract في الهندسة الإقليدية، الرباعي المماسي السابق هو :رباعي محدب حيث تكون امتدادات الأضلاع الأربعة مماسة لدائرة خارج الرباعي. وقد أطلق عليه أيضًا شكل رباعي قابل للتفسير . تسمى الدائرة بالحافة ، نصف قطرها هو الخارج ومركزها المثير ( E في الشكل). يقع المثير عند تقاطع ستة مناصرات الزاوية. هذه هي منصفات الزاوية الداخلية عند زاويتين متقابلتين للرأس ، ومنصف الزوايا الخارجية (منصفات الزوايا التكميلية ) عند زاويتين أخريين للرأس ، ومنصف الزوايا الخارجية عند الزوايا المتكونة عند تقاطع امتدادات الأضلاع المتقابلة (انظر الشكل إلى يمينًا ، حيث أربعة من هذه الأجزاء الستة عبارة عن مقاطع خطية منقطة). يرتبط الرباعي المماسي ارتباطًا وثيقًا بالشكل الرباعي المماسي (حيث تكون الأضلاع الأربعة مماسًا لدائرة). هناك اسم آخر لمقطع دائري وهو دائرة مقيدة ، ولكن هذا الاسم استخدم أيضًا لدائرة مماس أحد جوانب شكل رباعي محدب وامتدادات ضلعين متجاورين. في هذا السياق ، تحتوي جميع الأشكال الرباعية المحدبة على أربع دوائر مقيدة ، ولكن يمكن أن يكون لها على الأكثر دائرة واحدة. (ar) En geometría euclídea, un cuadrilátero extangencial es un cuadrilátero convexo donde las extensiones de los cuatro lados son tangentes a un círculo situado fuera del cuadrilátero.​ También se le ha llamado cuadrilátero exescriptible.​ El círculo se denomina su excircunferencia (o excírculo), su radio exradio y su centro el excentro (E en la figura). El excentro se encuentra en la intersección de las seis bisectrices internas de los ángulos correspondientes a cada par de vértices opuestos, a las bisectrices de los ángulos externos (bisectrices de los ángulos suplementarios) en los otros dos ángulos de vértice, y las bisectrices de ángulo externo en los ángulos formados donde las extensiones de lados opuestos se cruzan (véas la figura adjunta, donde cuatro de estas seis rectas son segmentos de línea punteada). El cuadrilátero extangencial está estrechamente relacionado con el cuadrilátero tangencial (donde los cuatro lados son tangentes a un círculo). Otro nombre utilizado para designarlo es círculo escrito,​ pero esta denominación también se ha usado para un círculo tangente a un lado de un cuadrilátero convexo y las extensiones de los dos lados adyacentes. En ese contexto, todos los cuadriláteros convexos tienen cuatro círculos escritos, pero a lo sumo pueden tener un excírculo.​ (es) In Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. It has also been called an exscriptible quadrilateral. The circle is called its excircle, its radius the exradius and its center the excenter (E in the figure). The excenter lies at the intersection of six angle bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors (supplementary angle bisectors) at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect (see the figure to the right, where four of these six are dotted line segments). The ex-tangential quadrilateral is closely related to the tangential quadrilateral (where the four sides are tangent to a circle). Another name for an excircle is an escribed circle, but that name has also been used for a circle tangent to one side of a convex quadrilateral and the extensions of the adjacent two sides. In that context all convex quadrilaterals have four escribed circles, but they can at most have one excircle. (en) Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности (вне четырёхугольника). Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис. Это биссектрисы двух внутренних углов противоположных углов четырёхугольника, биссектрисы внешних углов двух других вершин, и биссектрисы внешних углов в точках пересечения продолжений противоположных сторон (смотрите рисунок справа, указанные продолжения сторон проведены пунктиром). Внеописанный четырёхугольник тесно связан с описанным четырёхугольником (у которого четыре стороны касаются окружности). (ru)
dbo:thumbnail wiki-commons:Special:FilePath/Ex-tangential_quadrilateral.png?width=300
dbo:wikiPageID 32791638 (xsd:integer)
dbo:wikiPageLength 9948 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 995684075 (xsd:integer)
dbo:wikiPageWikiLink dbr:Quadratic_equation dbr:Quadrilateral dbr:Bretschneider's_formula dbr:Rhombus dbr:Maxima_and_minima dbr:Circle dbr:Circumcenter dbr:Concurrent_lines dbr:Convex_polygon dbr:Complete_quadrangle dbr:Augustus_De_Morgan dbc:Types_of_quadrilaterals dbr:Circumcircle dbr:Absolute_value dbr:Cyclic_quadrilateral dbr:Parallelograms dbr:Daniel_Pedoe dbr:Necessary_and_sufficient_condition dbr:Circumradius dbr:Jakob_Steiner dbr:Angle_bisector dbr:Tangential_quadrilateral dbr:Arithmetic_progression dbr:Bicentric_quadrilateral dbr:Bisection dbr:Supplementary_angles dbr:Square_(geometry) dbr:If_and_only_if dbr:Infinity dbr:Rectangle dbr:Kite_(geometry) dbr:Euclidean_geometry dbr:Pitot_theorem dbr:Internal_and_external_angle dbr:Supplementary_angle dbr:File:Ex-tangential_quadrilateral.png
dbp:wikiPageUsesTemplate dbt:Reflist dbt:Polygons
dct:subject dbc:Types_of_quadrilaterals
gold:hypernym dbr:Quadrilateral
rdf:type dbo:Bone yago:Abstraction100002137 yago:Attribute100024264 yago:Figure113862780 yago:PlaneFigure113863186 yago:Polygon113866144 yago:Quadrilateral113879126 yago:Shape100027807 yago:WikicatPolygons yago:WikicatQuadrilaterals
rdfs:comment Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности (вне четырёхугольника). Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис. Это биссектрисы двух внутренних углов противоположных углов четырёхугольника, биссектрисы внешних углов двух других вершин, и биссектрисы внешних углов в точках пересечения продолжений противоположных сторон (смотрите рисунок справа, указанные продолжения сторон проведены пунктиром). Внеописанный четырёхугольник тесно связан с описанным четырёхугольником (у которого четыре стороны касаются окружности). (ru) في الهندسة الإقليدية، الرباعي المماسي السابق هو :رباعي محدب حيث تكون امتدادات الأضلاع الأربعة مماسة لدائرة خارج الرباعي. وقد أطلق عليه أيضًا شكل رباعي قابل للتفسير . تسمى الدائرة بالحافة ، نصف قطرها هو الخارج ومركزها المثير ( E في الشكل). يقع المثير عند تقاطع ستة مناصرات الزاوية. هذه هي منصفات الزاوية الداخلية عند زاويتين متقابلتين للرأس ، ومنصف الزوايا الخارجية (منصفات الزوايا التكميلية ) عند زاويتين أخريين للرأس ، ومنصف الزوايا الخارجية عند الزوايا المتكونة عند تقاطع امتدادات الأضلاع المتقابلة (انظر الشكل إلى يمينًا ، حيث أربعة من هذه الأجزاء الستة عبارة عن مقاطع خطية منقطة). يرتبط الرباعي المماسي ارتباطًا وثيقًا بالشكل الرباعي المماسي (حيث تكون الأضلاع الأربعة مماسًا لدائرة). (ar) In Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. It has also been called an exscriptible quadrilateral. The circle is called its excircle, its radius the exradius and its center the excenter (E in the figure). The excenter lies at the intersection of six angle bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors (supplementary angle bisectors) at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect (see the figure to the right, where four of these six are dotted line segments). The ex-tangential quadrilateral is closely related to the ta (en) En geometría euclídea, un cuadrilátero extangencial es un cuadrilátero convexo donde las extensiones de los cuatro lados son tangentes a un círculo situado fuera del cuadrilátero.​ También se le ha llamado cuadrilátero exescriptible.​ El círculo se denomina su excircunferencia (o excírculo), su radio exradio y su centro el excentro (E en la figura). El excentro se encuentra en la intersección de las seis bisectrices internas de los ángulos correspondientes a cada par de vértices opuestos, a las bisectrices de los ángulos externos (bisectrices de los ángulos suplementarios) en los otros dos ángulos de vértice, y las bisectrices de ángulo externo en los ángulos formados donde las extensiones de lados opuestos se cruzan (véas la figura adjunta, donde cuatro de estas seis rectas son segmentos (es)
rdfs:label رباعي أضلاع مماسي خارجي (ar) Cuadrilátero extangencial (es) Ex-tangential quadrilateral (en) Внеописанный четырёхугольник (ru)
owl:sameAs freebase:Ex-tangential quadrilateral yago-res:Ex-tangential quadrilateral wikidata:Ex-tangential quadrilateral dbpedia-ar:Ex-tangential quadrilateral dbpedia-es:Ex-tangential quadrilateral dbpedia-ro:Ex-tangential quadrilateral dbpedia-ru:Ex-tangential quadrilateral http://ta.dbpedia.org/resource/வெளி-தொடு_நாற்கரம் https://global.dbpedia.org/id/4jNYy
prov:wasDerivedFrom wikipedia-en:Ex-tangential_quadrilateral?oldid=995684075&ns=0
foaf:depiction wiki-commons:Special:FilePath/Ex-tangential_quadrilateral.png
foaf:isPrimaryTopicOf wikipedia-en:Ex-tangential_quadrilateral
is dbo:wikiPageRedirects of dbr:Extangential_quadrilateral
is dbo:wikiPageWikiLink of dbr:Quadratic_equation dbr:Quadrilateral dbr:List_of_circle_topics dbr:Antiparallelogram dbr:List_of_mathematical_shapes dbr:Concurrent_lines dbr:Cyclic_quadrilateral dbr:Tangential_quadrilateral dbr:Bicentric_quadrilateral dbr:Bisection dbr:Trapezoid dbr:Kite_(geometry) dbr:Extended_side dbr:Extangential_quadrilateral
is foaf:primaryTopic of wikipedia-en:Ex-tangential_quadrilateral