Exponential type (original) (raw)

About DBpedia

In complex analysis, a branch of mathematics, a holomorphic function is said to be of exponential type C if its growth is bounded by the exponential function eC|z| for some real-valued constant C as |z| → ∞. When a function is bounded in this way, it is then possible to express it as certain kinds of convergent summations over a series of other complex functions, as well as understanding when it is possible to apply techniques such as Borel summation, or, for example, to apply the Mellin transform, or to perform approximations using the Euler–Maclaurin formula. The general case is handled by Nachbin's theorem, which defines the analogous notion of Ψ-type for a general function Ψ(z) as opposed to ez.

thumbnail

Property Value
dbo:abstract In complex analysis, a branch of mathematics, a holomorphic function is said to be of exponential type C if its growth is bounded by the exponential function eC|z for some real-valued constant C as z
dbo:thumbnail wiki-commons:Special:FilePath/ExtremeGaussian.png?width=300
dbo:wikiPageID 4081509 (xsd:integer)
dbo:wikiPageLength 6765 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1069100629 (xsd:integer)
dbo:wikiPageWikiLink dbr:Carlson's_theorem dbr:Mellin_transform dbr:Borel_summation dbr:Holomorphic_function dbr:Uniform_space dbr:Complete_space dbr:Complex_analysis dbr:Complex_plane dbr:Convex_set dbr:Mathematics dbr:Norm_(mathematics) dbr:Entire_function dbr:Fréchet_space dbr:Bounded_growth dbr:Symmetric dbr:Limit_superior dbr:Compact_element dbr:Polar_set dbr:Euler–Maclaurin_formula dbr:Exponential_function dbr:Finite_difference dbc:Complex_analysis dbr:Supremum dbr:Real_number dbr:Several_complex_variables dbr:Infimum dbr:Nachbin's_theorem dbr:Paley–Wiener_theorem dbr:Topological_space dbr:Complex_variable dbr:File:ExtremeGaussian.png dbr:Paley–Wiener_space
dbp:wikiPageUsesTemplate dbt:Citation dbt:For dbt:Harvtxt dbt:Reflist dbt:Short_description
dct:subject dbc:Complex_analysis
rdfs:comment In complex analysis, a branch of mathematics, a holomorphic function is said to be of exponential type C if its growth is bounded by the exponential function eC|z for some real-valued constant C as z
rdfs:label Type exponentiel (fr) Exponential type (en) 指数型 (zh) Функція експоненційного типу (uk)
owl:sameAs freebase:Exponential type wikidata:Exponential type dbpedia-fr:Exponential type dbpedia-uk:Exponential type dbpedia-zh:Exponential type https://global.dbpedia.org/id/4jxBJ
prov:wasDerivedFrom wikipedia-en:Exponential_type?oldid=1069100629&ns=0
foaf:depiction wiki-commons:Special:FilePath/ExtremeGaussian.png
foaf:isPrimaryTopicOf wikipedia-en:Exponential_type
is dbo:wikiPageDisambiguates of dbr:Type dbr:Exponential
is dbo:wikiPageRedirects of dbr:Exponential_Type
is dbo:wikiPageWikiLink of dbr:Carlson's_theorem dbr:Borel_summation dbr:Riemann–Liouville_integral dbr:Lidstone_series dbr:Entire_function dbr:Fréchet_space dbr:Bounded_type_(mathematics) dbr:Type dbr:Akhiezer's_theorem dbr:Exponential_Type dbr:Finite_difference dbr:Difference_polynomials dbr:List_of_exponential_topics dbr:Replica_trick dbr:Laplace_transform dbr:Exponential dbr:Paley–Wiener_theorem
is foaf:primaryTopic of wikipedia-en:Exponential_type