dbo:abstract |
In mathematics, geometric calculus extends the geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to encompass other mathematical theories including differential geometry and differential forms. (en) L’analyse géométrique, calcul géométrique, analyse multivectorielle, ou encore calcul multivectoriel, est une branche des mathématiques qui est aux structures d'algèbres géométriques ce que l'analyse vectorielle est aux espaces vectoriels. En substance, l'analyse géométrique considère des fonctions définies sur un espace vectoriel et à valeurs dans l'algèbre géométrique sous-tendue par cet espace, et s'intéresse aux limites exhibées par ces fonctions dans le cadre du calcul infinitésimal. (fr) |
dbo:thumbnail |
wiki-commons:Special:FilePath/Geometric_Calculus_Family_Tree.png?width=300 |
dbo:wikiPageExternalLink |
http://faculty.luther.edu/~macdonal/vagc/ |
dbo:wikiPageID |
19363014 (xsd:integer) |
dbo:wikiPageLength |
14909 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1121862599 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Product_rule dbr:Coordinate_chart dbr:Derivative dbc:Geometric_algebra dbr:Vector_(mathematics_and_physics) dbr:Commutative dbr:Commutator dbr:Mathematics dbr:Measure_(mathematics) dbr:Order_of_operations dbr:Orthonormal dbr:Christoffel_symbols dbr:Geometric_algebra dbr:Gradient dbr:Hodge_dual dbr:Stokes'_theorem dbr:Curl_(mathematics) dbr:Parallelepiped dbr:Directional_derivative dbr:Riemann_curvature_tensor dbr:Riemannian_volume_form dbc:Applied_mathematics dbc:Calculus dbr:Differential_form dbr:Differential_geometry dbr:Divergence dbr:Divergence_theorem dbr:Manifold dbr:Integral dbr:Metric_tensor dbr:Pseudoscalar dbr:Multivector dbr:Riemann_tensor dbr:Basis_vector dbr:Einstein_summation_notation dbr:Signed_volume dbr:Simplices dbr:Local_coordinate_system dbr:Multi-index dbr:Overdot dbr:Shape_tensor dbr:File:Geometric_Calculus_Family_Tree.png |
dbp:wikiPageUsesTemplate |
dbt:Cite_book dbt:Distinguish dbt:Reflist dbt:Short_description dbt:Calculus dbt:Industrial_and_applied_mathematics |
dct:subject |
dbc:Geometric_algebra dbc:Applied_mathematics dbc:Calculus |
rdf:type |
owl:Thing |
rdfs:comment |
In mathematics, geometric calculus extends the geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to encompass other mathematical theories including differential geometry and differential forms. (en) L’analyse géométrique, calcul géométrique, analyse multivectorielle, ou encore calcul multivectoriel, est une branche des mathématiques qui est aux structures d'algèbres géométriques ce que l'analyse vectorielle est aux espaces vectoriels. En substance, l'analyse géométrique considère des fonctions définies sur un espace vectoriel et à valeurs dans l'algèbre géométrique sous-tendue par cet espace, et s'intéresse aux limites exhibées par ces fonctions dans le cadre du calcul infinitésimal. (fr) |
rdfs:label |
Analyse multivectorielle (fr) Geometric calculus (en) |
owl:differentFrom |
dbr:Matrix_calculus dbr:Vector_calculus |
owl:sameAs |
freebase:Geometric calculus wikidata:Geometric calculus dbpedia-fr:Geometric calculus https://global.dbpedia.org/id/4kDWj |
prov:wasDerivedFrom |
wikipedia-en:Geometric_calculus?oldid=1121862599&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/Geometric_Calculus_Family_Tree.png |
foaf:isPrimaryTopicOf |
wikipedia-en:Geometric_calculus |
is dbo:wikiPageRedirects of |
dbr:Fundamental_theorem_of_geometric_calculus |
is dbo:wikiPageWikiLink of |
dbr:David_Hestenes dbr:Generalizations_of_the_derivative dbr:Clifford_algebra dbr:Geometric_algebra dbr:Glossary_of_areas_of_mathematics dbr:Chris_J._L._Doran dbr:Curl_(mathematics) dbr:Outermorphism dbr:Ishfaq_Ahmad_Khan dbr:Differential_geometry dbr:Vector_calculus dbr:Universal_geometric_algebra dbr:Stephen_Gull dbr:Fundamental_theorem_of_geometric_calculus |
is owl:differentFrom of |
dbr:Matrix_calculus dbr:Vector_calculus |
is foaf:primaryTopic of |
wikipedia-en:Geometric_calculus |