Helly's selection theorem (original) (raw)

Property Value
dbo:abstract In mathematics, Helly's selection theorem (also called the Helly selection principle) states that a uniformly bounded sequence of monotone real functions admits a convergent subsequence.In other words, it is a sequential compactness theorem for the space of uniformly bounded monotone functions.It is named for the Austrian mathematician Eduard Helly.A more general version of the theorem asserts compactness of the space BVloc of functions locally of bounded total variation that are uniformly bounded at a point. The theorem has applications throughout mathematical analysis. In probability theory, the result implies compactness of a tight family of measures. (en) Le théorème de sélection de Helly a été établi par le mathématicien Eduard Helly en 1912. Ce théorème garantit qu'une suite de fonctions qui a des admet une sous-suite convergente. Il permet en particulier le passage à la limite sous le signe de l'intégrale de Stieltjes. (fr) 数学におけるヘリーの選択定理(ヘリーのせんたくていり、英: Helly's selection theorem)は、局所的に有界変動函数であり、ある点において一様有界であるような函数は収束部分列を持つ、ということを述べた定理である。言い換えると、空間 BVloc に対するコンパクト性定理である。オーストラリアの数学者であるエードゥアルト・ヘリーの名にちなむ。 この定理は解析学において広く応用されている。確率論において、この結果は緊密な測度の族のコンパクト性を意味する。 (ja) In matematica, con teorema di Helly ci si riferisce a più teoremi dovuti a Eduard Helly. Due di essi riguardano l'analisi funzionale e il passaggio al limite sotto il segno di integrale di Stieltjes. Questi due risultati affermano insieme che una successione di funzioni che sia, localmente, a variazione totale limitata e in un punto, ammette una sottosuccessione convergente. In altre parole, si ha un teorema di compattezza per lo spazio delle funzioni a variazione limitata . (it)
dbo:wikiPageID 6740565 (xsd:integer)
dbo:wikiPageLength 5318 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1000180793 (xsd:integer)
dbo:wikiPageWikiLink dbr:Bounded_variation dbr:Uniformly_bounded dbr:Compact_space dbr:Convex_set dbr:Mathematical_analysis dbr:Mathematics dbr:Separable_space dbr:Closure_(topology) dbr:Bounded_set dbr:Locally_integrable_function dbr:Subsequence dbr:Mathematician dbr:Austria dbr:Banach_space dbr:Eduard_Helly dbr:Fraňková-Helly_selection_theorem dbr:Probability_theory dbc:Theorems_in_analysis dbr:Tightness_of_measures dbr:Distribution_(mathematics) dbc:Compactness_theorems dbr:Reflexive_space dbr:Total_variation dbr:Compactly_embedded dbr:Real_line dbr:Open_subset dbr:Convergent_sequence
dbp:wikiPageUsesTemplate dbt:Cite_book dbt:Short_description dbt:MathSciNet
dct:subject dbc:Theorems_in_analysis dbc:Compactness_theorems
rdf:type yago:WikicatCompactnessTheorems yago:WikicatTheorems yago:WikicatTheoremsInAnalysis yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293
rdfs:comment Le théorème de sélection de Helly a été établi par le mathématicien Eduard Helly en 1912. Ce théorème garantit qu'une suite de fonctions qui a des admet une sous-suite convergente. Il permet en particulier le passage à la limite sous le signe de l'intégrale de Stieltjes. (fr) 数学におけるヘリーの選択定理(ヘリーのせんたくていり、英: Helly's selection theorem)は、局所的に有界変動函数であり、ある点において一様有界であるような函数は収束部分列を持つ、ということを述べた定理である。言い換えると、空間 BVloc に対するコンパクト性定理である。オーストラリアの数学者であるエードゥアルト・ヘリーの名にちなむ。 この定理は解析学において広く応用されている。確率論において、この結果は緊密な測度の族のコンパクト性を意味する。 (ja) In matematica, con teorema di Helly ci si riferisce a più teoremi dovuti a Eduard Helly. Due di essi riguardano l'analisi funzionale e il passaggio al limite sotto il segno di integrale di Stieltjes. Questi due risultati affermano insieme che una successione di funzioni che sia, localmente, a variazione totale limitata e in un punto, ammette una sottosuccessione convergente. In altre parole, si ha un teorema di compattezza per lo spazio delle funzioni a variazione limitata . (it) In mathematics, Helly's selection theorem (also called the Helly selection principle) states that a uniformly bounded sequence of monotone real functions admits a convergent subsequence.In other words, it is a sequential compactness theorem for the space of uniformly bounded monotone functions.It is named for the Austrian mathematician Eduard Helly.A more general version of the theorem asserts compactness of the space BVloc of functions locally of bounded total variation that are uniformly bounded at a point. (en)
rdfs:label Théorème de sélection de Helly (fr) Teorema di Helly (it) Helly's selection theorem (en) ヘリーの選択定理 (ja)
owl:sameAs freebase:Helly's selection theorem yago-res:Helly's selection theorem wikidata:Helly's selection theorem dbpedia-fr:Helly's selection theorem dbpedia-it:Helly's selection theorem dbpedia-ja:Helly's selection theorem https://global.dbpedia.org/id/3gHVA
prov:wasDerivedFrom wikipedia-en:Helly's_selection_theorem?oldid=1000180793&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Helly's_selection_theorem
is dbo:knownFor of dbr:Eduard_Helly
is dbo:wikiPageRedirects of dbr:Helly_selection_theorem
is dbo:wikiPageWikiLink of dbr:Bounded_variation dbr:Fraňková–Helly_selection_theorem dbr:Fréchet–Kolmogorov_theorem dbr:Eduard_Helly dbr:Arzelà–Ascoli_theorem dbr:List_of_theorems dbr:Sub-probability_measure dbr:Positive_harmonic_function dbr:Selection_theorem dbr:Helly_selection_theorem
is dbp:knownFor of dbr:Eduard_Helly
is owl:differentFrom of dbr:Helly's_theorem
is foaf:primaryTopic of wikipedia-en:Helly's_selection_theorem