Homotopy principle (original) (raw)

About DBpedia

편미분 방정식 이론에서, 호모토피 원리(homotopy原理, 영어: homotopy principle 호모토피 프린시플[*], h-principle 에이치 프린시플[*])는 특별한 편미분 방정식의 경우, 그 해의 존재 등의 성질이 호모토피 이론으로 결정된다는 성질이다.

thumbnail

Property Value
dbo:abstract In mathematics, the homotopy principle (or h-principle) is a very general way to solve partial differential equations (PDEs), and more generally (PDRs). The h-principle is good for underdetermined PDEs or PDRs, such as the immersion problem, isometric immersion problem, fluid dynamics, and other areas. The theory was started by Yakov Eliashberg, Mikhail Gromov and Anthony V. Phillips. It was based on earlier results that reduced partial differential relations to homotopy, particularly for immersions. The first evidence of h-principle appeared in the Whitney–Graustein theorem. This was followed by the Nash–Kuiper isometric C1 embedding theorem and the Smale–Hirsch immersion theorem. (en) 편미분 방정식 이론에서, 호모토피 원리(homotopy原理, 영어: homotopy principle 호모토피 프린시플[*], h-principle 에이치 프린시플[*])는 특별한 편미분 방정식의 경우, 그 해의 존재 등의 성질이 호모토피 이론으로 결정된다는 성질이다. (ko) H-принцип (читается аш-принцип) — общий способ решения дифференциальных уравнений в частных производных и, в более общем плане, дифференциальных соотношений в частных производных. Н-принцип хорош для недоопределённых систем, подобных тем, которые появляются в задачах о погружении, изометрическом погружении и других. Теория оформилась в работах Элиашберга, Громова и Филлипса. Основанием послужили более ранние результаты, в которых решение дифференциальных соотношений сводилось к гомотопии, в частности в задачах о погружениях. Первые идеи h-принципа появились в , парадоксе выворачивания сферы, теореме Нэша — Кёйпера и . (ru)
dbo:thumbnail wiki-commons:Special:FilePath/MorinSurfaceAsSphere'sInsideVersusOutside.png?width=300
dbo:wikiPageExternalLink https://books.google.com/books%3Fid=1YVLmDG55XEC https://books.google.com/books%3Fid=JcMwHWSBSB4C
dbo:wikiPageID 481119 (xsd:integer)
dbo:wikiPageLength 11177 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1117735601 (xsd:integer)
dbo:wikiPageWikiLink dbr:Robotics dbr:Pseudoholomorphic_curve dbr:Convex_set dbr:Mathematics dbr:Gauss_map dbr:Theorema_Egregium dbr:Homotopic dbr:Underdetermined_system dbc:Mathematical_principles dbr:Partial_differential_equation dbr:Frame_bundle dbr:Legendrian_knot dbr:Sphere_eversion dbr:Holonomic_(robotics) dbc:Partial_differential_equations dbr:Homotopy dbr:Winding_number dbr:Whitney–Graustein_theorem dbr:Nash_embedding_theorem dbr:Yakov_Eliashberg dbr:Lagrangian_submanifold dbr:Stiefel_manifold dbr:Nash–Kuiper_theorem dbr:Universal_covering_space dbr:Turning_number dbr:Gauss_curvature dbr:Mikhail_Gromov_(mathematician) dbr:Short_map dbr:Nash-Kuiper_theorem dbr:File:MorinSurfaceAsSphere'sInsideVersusOutside.PNG dbr:File:Winding_Number_Around_Point.svg dbr:Partial_differential_relation
dbp:wikiPageUsesTemplate dbt:Cite_book dbt:Cite_journal dbt:Reflist
dct:subject dbc:Mathematical_principles dbc:Partial_differential_equations
rdf:type yago:WikicatMathematicalPrinciples yago:WikicatPartialDifferentialEquations yago:Abstraction100002137 yago:Cognition100023271 yago:Communication100033020 yago:Content105809192 yago:DifferentialEquation106670521 yago:Equation106669864 yago:Generalization105913275 yago:Idea105833840 yago:MathematicalStatement106732169 yago:Message106598915 yago:PartialDifferentialEquation106670866 yago:Principle105913538 yago:PsychologicalFeature100023100 yago:Statement106722453
rdfs:comment 편미분 방정식 이론에서, 호모토피 원리(homotopy原理, 영어: homotopy principle 호모토피 프린시플[*], h-principle 에이치 프린시플[*])는 특별한 편미분 방정식의 경우, 그 해의 존재 등의 성질이 호모토피 이론으로 결정된다는 성질이다. (ko) In mathematics, the homotopy principle (or h-principle) is a very general way to solve partial differential equations (PDEs), and more generally (PDRs). The h-principle is good for underdetermined PDEs or PDRs, such as the immersion problem, isometric immersion problem, fluid dynamics, and other areas. (en) H-принцип (читается аш-принцип) — общий способ решения дифференциальных уравнений в частных производных и, в более общем плане, дифференциальных соотношений в частных производных. Н-принцип хорош для недоопределённых систем, подобных тем, которые появляются в задачах о погружении, изометрическом погружении и других. Теория оформилась в работах Элиашберга, Громова и Филлипса. Основанием послужили более ранние результаты, в которых решение дифференциальных соотношений сводилось к гомотопии, в частности в задачах о погружениях. (ru)
rdfs:label Homotopy principle (en) 호모토피 원리 (ko) H-принцип (ru)
owl:sameAs freebase:Homotopy principle yago-res:Homotopy principle wikidata:Homotopy principle dbpedia-ko:Homotopy principle dbpedia-ru:Homotopy principle https://global.dbpedia.org/id/4mr6s
prov:wasDerivedFrom wikipedia-en:Homotopy_principle?oldid=1117735601&ns=0
foaf:depiction wiki-commons:Special:FilePath/Winding_Number_Around_Point.svg wiki-commons:Special:FilePath/MorinSurfaceAsSphere'sInsideVersusOutside.png
foaf:isPrimaryTopicOf wikipedia-en:Homotopy_principle
is dbo:knownFor of dbr:Yakov_Eliashberg
is dbo:wikiPageRedirects of dbr:H-principle dbr:Homotopy-principle
is dbo:wikiPageWikiLink of dbr:Homotopical_connectivity dbr:Morris_Hirsch dbr:Stephen_Smale dbr:Emmy_Murphy dbr:Agnar_Höskuldsson dbr:List_of_Russian_mathematicians dbr:List_of_Russian_scientists dbr:Regular_homotopy dbr:Classification_of_manifolds dbr:H-principle dbr:Yakov_Eliashberg dbr:Immersion_(mathematics) dbr:List_of_Russian_people dbr:Homotopy-principle
is dbp:knownFor of dbr:Yakov_Eliashberg
is foaf:primaryTopic of wikipedia-en:Homotopy_principle