Mercer's theorem (original) (raw)

Property Value
dbo:abstract Der Satz von Mercer ist eine mathematische Aussage aus dem Teilgebiet der Funktionalanalysis. Er ist benannt nach dem Mathematiker James Mercer und besagt, dass der Integralkern eines positiven, selbstadjungierten Integraloperators als konvergente Reihe über seine Eigenwerte und Eigenvektoren dargestellt werden kann. (de) En mathématiques et plus précisément en analyse fonctionnelle, le théorème de Mercer est une représentation d'une fonction symétrique de type positif par le carré d'une série convergente de produits de fonctions. Ce théorème est l'un des résultats phares de James Mercer. C'est un outil théorique important dans la théorie des équations intégrales. Il est aussi utilisé dans la théorie hilbertienne des processus stochastiques (voir (en) et Transformée de Karhunen-Loève). (fr) In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used to characterize a symmetric positive semi-definite kernel. (en)
dbo:wikiPageID 303990 (xsd:integer)
dbo:wikiPageLength 10620 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1116343803 (xsd:integer)
dbo:wikiPageWikiLink dbr:Borel_algebra dbr:David_Hilbert dbr:Definite_bilinear_form dbr:Richard_Courant dbr:Uniform_norm dbr:Integral_equation dbc:Theorems_in_functional_analysis dbr:Mathematics dbr:Spectral_theory_of_compact_operators dbr:Symmetric_matrix dbr:Eigenfunction dbr:Equicontinuous dbr:Function_(mathematics) dbr:Gramian_matrix dbr:Theorem dbr:Methoden_der_mathematischen_Physik dbr:Representer_theorem dbr:Linear_operator dbr:Lp_space dbr:Compact_operator_on_Hilbert_space dbr:Fubini's_theorem dbr:Functional_analysis dbr:Kernel_method dbr:Orthonormal_basis dbr:Spectral_theory dbr:James_Mercer_(mathematician) dbr:Non-negative dbr:Hilbert–Schmidt_integral_operator dbr:Hilbert–Schmidt_operator dbr:Konrad_Jörgens dbr:Hilbert_space dbr:First-countable dbr:Karhunen–Loève_theorem dbr:Trace_class dbr:Positive-definite_kernel dbr:Positive-semidefinite_matrix dbr:Spectral_theorem dbr:Injective_function dbr:Real_number dbr:Kernel_trick dbr:Square-integrable_function dbr:Unit_ball dbr:Stochastic_process dbr:Orthonormal_set dbr:Ascoli's_theorem dbr:Eigenvalues dbr:Compact_Hausdorff_space
dbp:id p/m063440 (en)
dbp:title Mercer theorem (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:Citation dbt:Citation_needed dbt:Harv dbt:Reflist dbt:Functional_analysis
dct:subject dbc:Theorems_in_functional_analysis
gold:hypernym dbr:Representation
rdf:type yago:WikicatMathematicalTheorems yago:WikicatTheoremsInFunctionalAnalysis yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293
rdfs:comment Der Satz von Mercer ist eine mathematische Aussage aus dem Teilgebiet der Funktionalanalysis. Er ist benannt nach dem Mathematiker James Mercer und besagt, dass der Integralkern eines positiven, selbstadjungierten Integraloperators als konvergente Reihe über seine Eigenwerte und Eigenvektoren dargestellt werden kann. (de) En mathématiques et plus précisément en analyse fonctionnelle, le théorème de Mercer est une représentation d'une fonction symétrique de type positif par le carré d'une série convergente de produits de fonctions. Ce théorème est l'un des résultats phares de James Mercer. C'est un outil théorique important dans la théorie des équations intégrales. Il est aussi utilisé dans la théorie hilbertienne des processus stochastiques (voir (en) et Transformée de Karhunen-Loève). (fr) In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used to characterize a symmetric positive semi-definite kernel. (en)
rdfs:label Satz von Mercer (de) Théorème de Mercer (fr) Mercer's theorem (en)
owl:sameAs freebase:Mercer's theorem yago-res:Mercer's theorem wikidata:Mercer's theorem dbpedia-de:Mercer's theorem dbpedia-fr:Mercer's theorem https://global.dbpedia.org/id/gots
prov:wasDerivedFrom wikipedia-en:Mercer's_theorem?oldid=1116343803&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Mercer's_theorem
is dbo:wikiPageRedirects of dbr:Mercer_Theorem dbr:Mercer_theorem dbr:Mercers_theorem dbr:Mercer's_condition dbr:Mercer_condition dbr:Semi-definite_kernel
is dbo:wikiPageWikiLink of dbr:List_of_functional_analysis_topics dbr:Jovan_Karamata dbr:List_of_University_of_Manchester_people dbr:Regularized_least_squares dbr:Reproducing_kernel_Hilbert_space dbr:String_kernel dbr:Empirical_orthogonal_functions dbr:Functional_data_analysis dbr:Representer_theorem dbr:Compact_operator_on_Hilbert_space dbr:Kernel_method dbr:Axis–angle_representation dbr:James_Mercer_(mathematician) dbr:Gram_matrix dbr:Isomap dbr:Mercer_Theorem dbr:Mercer_theorem dbr:Mercers_theorem dbr:Inner_product_space dbr:Kosambi–Karhunen–Loève_theorem dbr:Mercer's_condition dbr:List_of_theorems dbr:Mercer_condition dbr:Semi-definite_kernel
is foaf:primaryTopic of wikipedia-en:Mercer's_theorem