Michael selection theorem (original) (raw)

About DBpedia

In functional analysis, a branch of mathematics, Michael selection theorem is a selection theorem named after Ernest Michael. In its most popular form, it states the following: Let X be a paracompact space and Y a Banach space.Let be a lower hemicontinuous multivalued map with nonempty convex closed values.Then there exists a continuous selection of F.Conversely, if any lower semicontinuous multimap from topological space X to a Banach space, with nonempty convex closed values, admits a continuous selection, then X is paracompact. This provides another characterization for paracompactness.

thumbnail

Property Value
dbo:abstract In functional analysis, a branch of mathematics, Michael selection theorem is a selection theorem named after Ernest Michael. In its most popular form, it states the following: Let X be a paracompact space and Y a Banach space.Let be a lower hemicontinuous multivalued map with nonempty convex closed values.Then there exists a continuous selection of F.Conversely, if any lower semicontinuous multimap from topological space X to a Banach space, with nonempty convex closed values, admits a continuous selection, then X is paracompact. This provides another characterization for paracompactness. (en) En mathématiques, le théorème de sélection de Michael, est un théorème d'analyse fonctionnelle démontré en 1956 par (en). Il s'énonce comme suit : Si X est un espace paracompact alors, toute multifonction hémicontinue inférieurement Γ, de X dans un espace de Banach E et à valeurs des convexes fermées non vides, possède une « sélection » continue, c'est-à-dire qu'il existe une application continue f : X → E telle que pour tout x de X, f(x) appartienne à Γ(x). Michael a aussi démontré la réciproque, si bien que cette propriété caractérise les espaces paracompacts (parmi les espaces séparés). (fr)
dbo:thumbnail wiki-commons:Special:FilePath/Kakutani.svg?width=300
dbo:wikiPageID 17970233 (xsd:integer)
dbo:wikiPageLength 7039 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1068328230 (xsd:integer)
dbo:wikiPageWikiLink dbr:Convex_set dbc:Theorems_in_functional_analysis dbc:Properties_of_topological_spaces dbr:Converse_(logic) dbr:Lower_hemicontinuous dbr:Lower_semi-continuous dbr:Choice_function dbr:Closed_set dbr:Functional_analysis dbr:Hemicontinuity dbr:Banach_space dbr:Topological_vector_space dbr:Ernest_Michael dbr:Paracompact_space dbr:Differential_inclusion dbr:File:Kakutani.svg dbr:Peano_existence_theorem dbr:Topology_and_its_Applications dbc:Continuous_mappings dbc:Compactness_theorems dbr:Continuous_function_(topology) dbr:Paracompact dbr:Multivalued_function dbr:Normed_vector_space dbr:Selection_theorem dbr:Zero-dimensional_Michael_selection_theorem
dbp:wikiPageUsesTemplate dbt:Cite_book dbt:Cite_journal dbt:Clear dbt:Reflist dbt:Short_description dbt:Functional_analysis
dct:subject dbc:Theorems_in_functional_analysis dbc:Properties_of_topological_spaces dbc:Continuous_mappings dbc:Compactness_theorems
rdf:type yago:WikicatCompactnessTheorems yago:WikicatContinuousMappings yago:WikicatTheoremsInFunctionalAnalysis yago:Abstraction100002137 yago:Communication100033020 yago:Function113783816 yago:MathematicalRelation113783581 yago:Message106598915 yago:Possession100032613 yago:Property113244109 yago:Proposition106750804 yago:Relation100031921 yago:Statement106722453 yago:Theorem106752293 yago:WikicatPropertiesOfTopologicalSpaces
rdfs:comment In functional analysis, a branch of mathematics, Michael selection theorem is a selection theorem named after Ernest Michael. In its most popular form, it states the following: Let X be a paracompact space and Y a Banach space.Let be a lower hemicontinuous multivalued map with nonempty convex closed values.Then there exists a continuous selection of F.Conversely, if any lower semicontinuous multimap from topological space X to a Banach space, with nonempty convex closed values, admits a continuous selection, then X is paracompact. This provides another characterization for paracompactness. (en) En mathématiques, le théorème de sélection de Michael, est un théorème d'analyse fonctionnelle démontré en 1956 par (en). Il s'énonce comme suit : Si X est un espace paracompact alors, toute multifonction hémicontinue inférieurement Γ, de X dans un espace de Banach E et à valeurs des convexes fermées non vides, possède une « sélection » continue, c'est-à-dire qu'il existe une application continue f : X → E telle que pour tout x de X, f(x) appartienne à Γ(x). Michael a aussi démontré la réciproque, si bien que cette propriété caractérise les espaces paracompacts (parmi les espaces séparés). (fr)
rdfs:label Théorème de sélection de Michael (fr) Michael selection theorem (en)
owl:sameAs freebase:Michael selection theorem yago-res:Michael selection theorem wikidata:Michael selection theorem dbpedia-fr:Michael selection theorem https://global.dbpedia.org/id/4rmvD
prov:wasDerivedFrom wikipedia-en:Michael_selection_theorem?oldid=1068328230&ns=0
foaf:depiction wiki-commons:Special:FilePath/Kakutani.svg
foaf:isPrimaryTopicOf wikipedia-en:Michael_selection_theorem
is dbo:wikiPageRedirects of dbr:Michael's_continuous_selection_theorem
is dbo:wikiPageWikiLink of dbr:Hemicontinuity dbr:Ernest_Michael dbr:Paracompact_space dbr:Multivalued_function dbr:Selection_theorem dbr:Michael's_continuous_selection_theorem
is foaf:primaryTopic of wikipedia-en:Michael_selection_theorem