Minimum mean square error (original) (raw)

Property Value
dbo:abstract In statistics and signal processing, a minimum mean square error (MMSE) estimator is an estimation method which minimizes the mean square error (MSE), which is a common measure of estimator quality, of the fitted values of a dependent variable. In the Bayesian setting, the term MMSE more specifically refers to estimation with quadratic loss function. In such case, the MMSE estimator is given by the posterior mean of the parameter to be estimated. Since the posterior mean is cumbersome to calculate, the form of the MMSE estimator is usually constrained to be within a certain class of functions. Linear MMSE estimators are a popular choice since they are easy to use, easy to calculate, and very versatile. It has given rise to many popular estimators such as the Wiener–Kolmogorov filter and Kalman filter. (en) 在統計學和信号处理中,最小均方误差(英語:Minimum mean-square error,缩写MMSE)估計是一种使均方误差(MSE)最小化的估计函数,其通常被称为最优估计。 (zh)
dbo:wikiPageExternalLink http://cnx.rice.edu/content/m11267/latest/ https://archive.org/details/fundamentalsstat00kays_032 https://archive.org/details/fundamentalsstat00kays_032/page/n352 https://archive.org/details/predictionimprov0000bibb https://web.archive.org/web/20080725052939/http:/cnx.rice.edu/content/m11267/latest/
dbo:wikiPageID 1761545 (xsd:integer)
dbo:wikiPageLength 39995 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1106846911 (xsd:integer)
dbo:wikiPageWikiLink dbr:Scalar_(mathematics) dbc:Statistical_deviation_and_dispersion dbc:Point_estimation_performance dbr:Uniform_distribution_(continuous) dbr:Levinson_recursion dbr:Zero-forcing_equalizer dbr:Conjugate_gradient_method dbr:Estimator dbr:Gauss–Markov_theorem dbr:Monte_Carlo_methods dbr:Orthogonality_principle dbr:Cholesky_decomposition dbr:Signal_processing dbr:Statistics dbr:Adaptive_filter dbr:Trace_(linear_algebra) dbr:Least_mean_squares_filter dbr:Least_squares dbr:Linear_prediction dbr:Minimum-variance_unbiased_estimator dbc:Signal_estimation dbr:Expected_value dbr:Bayes_theorem dbr:Kalman_filter dbr:Dependent_variable dbr:Stochastic_gradient_descent dbr:QR_decomposition dbr:Recursive_least_squares_filter dbr:Covariance_matrix dbr:Efficiency_(statistics) dbr:Toeplitz_matrix dbr:Wiener_filter dbr:Mean_square_error dbr:Loss_function dbr:Mean_squared_error dbr:Wide_sense_stationary dbr:Fisher_information dbr:Asymptotically_unbiased dbr:Bayesian_estimator dbr:Gauss_elimination dbr:Jointly_Gaussian dbr:Pearson's_correlation_coefficient
dbp:border 1 (xsd:integer)
dbp:wikiPageUsesTemplate dbt:Center dbt:Cite_book dbt:Cite_web dbt:Hidden_begin dbt:Hidden_end dbt:Refbegin dbt:Refend dbt:Use_dmy_dates
dct:subject dbc:Statistical_deviation_and_dispersion dbc:Point_estimation_performance dbc:Signal_estimation
gold:hypernym dbr:Method
rdf:type dbo:Software
rdfs:comment 在統計學和信号处理中,最小均方误差(英語:Minimum mean-square error,缩写MMSE)估計是一种使均方误差(MSE)最小化的估计函数,其通常被称为最优估计。 (zh) In statistics and signal processing, a minimum mean square error (MMSE) estimator is an estimation method which minimizes the mean square error (MSE), which is a common measure of estimator quality, of the fitted values of a dependent variable. In the Bayesian setting, the term MMSE more specifically refers to estimation with quadratic loss function. In such case, the MMSE estimator is given by the posterior mean of the parameter to be estimated. Since the posterior mean is cumbersome to calculate, the form of the MMSE estimator is usually constrained to be within a certain class of functions. Linear MMSE estimators are a popular choice since they are easy to use, easy to calculate, and very versatile. It has given rise to many popular estimators such as the Wiener–Kolmogorov filter and Ka (en)
rdfs:label Minimum mean square error (en) 最小均方误差 (zh)
owl:sameAs freebase:Minimum mean square error wikidata:Minimum mean square error dbpedia-zh:Minimum mean square error https://global.dbpedia.org/id/Ajbk
prov:wasDerivedFrom wikipedia-en:Minimum_mean_square_error?oldid=1106846911&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Minimum_mean_square_error
is dbo:wikiPageDisambiguates of dbr:MMSE
is dbo:wikiPageRedirects of dbr:Minimum_mean-square_error dbr:Minimum_mean-square_error_estimate dbr:Minimum_mean-squared_error dbr:Minimum_mean_squared_error dbr:Lmmse dbr:MMSE_estimator
is dbo:wikiPageWikiLink of dbr:Minimax_estimator dbr:Best_linear_unbiased_prediction dbr:Point_estimation dbr:Cooperative_MIMO dbr:Equalization_(communications) dbr:Orthogonality_principle dbr:Polarization-division_multiplexing dbr:Probabilistic_data_association_filter dbr:Joint_Probabilistic_Data_Association_Filter dbr:Least_squares dbr:Linear_least_squares dbr:Linear_prediction dbr:Minimum-variance_unbiased_estimator dbr:Kalman_filter dbr:Principal_component_analysis dbr:Wiener_filter dbr:Ordinary_least_squares dbr:MMSE dbr:Mean_squared_error dbr:List_of_statistics_articles dbr:Statistic dbr:Smart_antenna dbr:Minimum_mean-square_error dbr:Minimum_mean-square_error_estimate dbr:Minimum_mean-squared_error dbr:Minimum_mean_squared_error dbr:Lmmse dbr:MMSE_estimator
is foaf:primaryTopic of wikipedia-en:Minimum_mean_square_error