dbo:abstract |
In geometry, a mixtilinear incircle of a triangle is a circle tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex is called the -mixtilinear incircle. Every triangle has three unique mixtilinear incircles, one corresponding to each vertex. (en) En géométrie, un cercle mixtilinéaire d'un triangle est un cercle tangent à deux de ses côtés et intérieurement tangent à son cercle circonscrit. Chaque triangle a trois cercles mixtilinéaires uniques, correspondant à chaque sommet du triangle. (fr) 混線内接円(こんせんないせつえん、英: mixtilinear incircle)とは、ある三角形の二辺に接し、かつその外接円に内接する円のことである。三角形の頂点 を含む二辺に接する混線内接円は 混線内接円と呼ぶ。すべての三角形は、各頂点に一意に対応する三つの混線内接円を持つ。 (ja) 아래는 삼각형의 외접원과 두 변에 접하는 원(Mixtilinear Incircle)에 대한 설명이다. (ko) Een menglineair ingeschreven cirkel is een cirkel die raakt aan twee zijden van een driehoek ABC en aan de binnenkant de omgeschreven cirkel van ABC. (nl) |
dbo:thumbnail |
wiki-commons:Special:FilePath/Mixtilinear_incircle.png?width=300 |
dbo:wikiPageID |
69072799 (xsd:integer) |
dbo:wikiPageLength |
7210 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1080347455 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Encyclopedia_of_Triangle_Centers dbr:Projective_harmonic_conjugate dbr:Incenter dbr:Inscribed_angle dbr:Inversive_geometry dbr:Circle dbr:Function_composition dbr:Geometry dbr:Tangent dbc:Geometry dbr:Symmedian dbr:Cyclic_quadrilateral dbr:Excircle dbr:Pascal's_theorem dbr:Bijection dbr:Homothety dbr:Triangle dbr:Circumscribed_circle dbr:Vertex_(geometry) dbr:Reflection_symmetry dbr:Arc_(geometric) dbr:File:Mixtilinear_incircle.png dbr:File:Mixtilinear_incircle_construction.png |
dct:subject |
dbc:Geometry |
rdfs:comment |
In geometry, a mixtilinear incircle of a triangle is a circle tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex is called the -mixtilinear incircle. Every triangle has three unique mixtilinear incircles, one corresponding to each vertex. (en) En géométrie, un cercle mixtilinéaire d'un triangle est un cercle tangent à deux de ses côtés et intérieurement tangent à son cercle circonscrit. Chaque triangle a trois cercles mixtilinéaires uniques, correspondant à chaque sommet du triangle. (fr) 混線内接円(こんせんないせつえん、英: mixtilinear incircle)とは、ある三角形の二辺に接し、かつその外接円に内接する円のことである。三角形の頂点 を含む二辺に接する混線内接円は 混線内接円と呼ぶ。すべての三角形は、各頂点に一意に対応する三つの混線内接円を持つ。 (ja) 아래는 삼각형의 외접원과 두 변에 접하는 원(Mixtilinear Incircle)에 대한 설명이다. (ko) Een menglineair ingeschreven cirkel is een cirkel die raakt aan twee zijden van een driehoek ABC en aan de binnenkant de omgeschreven cirkel van ABC. (nl) |
rdfs:label |
Cercle mixtilinéaire d'un triangle (fr) 삼각형의 외접원과 두 변에 접하는 원 (ko) Mixtilinear incircles of a triangle (en) 混線内接円 (ja) Menglineair ingeschreven cirkel (nl) |
owl:sameAs |
wikidata:Mixtilinear incircles of a triangle dbpedia-fr:Mixtilinear incircles of a triangle dbpedia-ja:Mixtilinear incircles of a triangle dbpedia-ko:Mixtilinear incircles of a triangle dbpedia-nl:Mixtilinear incircles of a triangle https://global.dbpedia.org/id/6D8g6 |
prov:wasDerivedFrom |
wikipedia-en:Mixtilinear_incircles_of_a_triangle?oldid=1080347455&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/Mixtilinear_incircle.png wiki-commons:Special:FilePath/Mixtilinear_incircle_construction.png |
foaf:isPrimaryTopicOf |
wikipedia-en:Mixtilinear_incircles_of_a_triangle |
is dbo:wikiPageWikiLink of |
dbr:Nagel_point dbr:Feuerbach_hyperbola |
is foaf:primaryTopic of |
wikipedia-en:Mixtilinear_incircles_of_a_triangle |