Mixtilinear incircles of a triangle (original) (raw)

Property Value
dbo:abstract In geometry, a mixtilinear incircle of a triangle is a circle tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex is called the -mixtilinear incircle. Every triangle has three unique mixtilinear incircles, one corresponding to each vertex. (en) En géométrie, un cercle mixtilinéaire d'un triangle est un cercle tangent à deux de ses côtés et intérieurement tangent à son cercle circonscrit. Chaque triangle a trois cercles mixtilinéaires uniques, correspondant à chaque sommet du triangle. (fr) 混線内接円(こんせんないせつえん、英: mixtilinear incircle)とは、ある三角形の二辺に接し、かつその外接円に内接する円のことである。三角形の頂点 を含む二辺に接する混線内接円は 混線内接円と呼ぶ。すべての三角形は、各頂点に一意に対応する三つの混線内接円を持つ。 (ja) 아래는 삼각형의 외접원과 두 변에 접하는 원(Mixtilinear Incircle)에 대한 설명이다. (ko) Een menglineair ingeschreven cirkel is een cirkel die raakt aan twee zijden van een driehoek ABC en aan de binnenkant de omgeschreven cirkel van ABC. (nl)
dbo:thumbnail wiki-commons:Special:FilePath/Mixtilinear_incircle.png?width=300
dbo:wikiPageID 69072799 (xsd:integer)
dbo:wikiPageLength 7210 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1080347455 (xsd:integer)
dbo:wikiPageWikiLink dbr:Encyclopedia_of_Triangle_Centers dbr:Projective_harmonic_conjugate dbr:Incenter dbr:Inscribed_angle dbr:Inversive_geometry dbr:Circle dbr:Function_composition dbr:Geometry dbr:Tangent dbc:Geometry dbr:Symmedian dbr:Cyclic_quadrilateral dbr:Excircle dbr:Pascal's_theorem dbr:Bijection dbr:Homothety dbr:Triangle dbr:Circumscribed_circle dbr:Vertex_(geometry) dbr:Reflection_symmetry dbr:Arc_(geometric) dbr:File:Mixtilinear_incircle.png dbr:File:Mixtilinear_incircle_construction.png
dct:subject dbc:Geometry
rdfs:comment In geometry, a mixtilinear incircle of a triangle is a circle tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex is called the -mixtilinear incircle. Every triangle has three unique mixtilinear incircles, one corresponding to each vertex. (en) En géométrie, un cercle mixtilinéaire d'un triangle est un cercle tangent à deux de ses côtés et intérieurement tangent à son cercle circonscrit. Chaque triangle a trois cercles mixtilinéaires uniques, correspondant à chaque sommet du triangle. (fr) 混線内接円(こんせんないせつえん、英: mixtilinear incircle)とは、ある三角形の二辺に接し、かつその外接円に内接する円のことである。三角形の頂点 を含む二辺に接する混線内接円は 混線内接円と呼ぶ。すべての三角形は、各頂点に一意に対応する三つの混線内接円を持つ。 (ja) 아래는 삼각형의 외접원과 두 변에 접하는 원(Mixtilinear Incircle)에 대한 설명이다. (ko) Een menglineair ingeschreven cirkel is een cirkel die raakt aan twee zijden van een driehoek ABC en aan de binnenkant de omgeschreven cirkel van ABC. (nl)
rdfs:label Cercle mixtilinéaire d'un triangle (fr) 삼각형의 외접원과 두 변에 접하는 원 (ko) Mixtilinear incircles of a triangle (en) 混線内接円 (ja) Menglineair ingeschreven cirkel (nl)
owl:sameAs wikidata:Mixtilinear incircles of a triangle dbpedia-fr:Mixtilinear incircles of a triangle dbpedia-ja:Mixtilinear incircles of a triangle dbpedia-ko:Mixtilinear incircles of a triangle dbpedia-nl:Mixtilinear incircles of a triangle https://global.dbpedia.org/id/6D8g6
prov:wasDerivedFrom wikipedia-en:Mixtilinear_incircles_of_a_triangle?oldid=1080347455&ns=0
foaf:depiction wiki-commons:Special:FilePath/Mixtilinear_incircle.png wiki-commons:Special:FilePath/Mixtilinear_incircle_construction.png
foaf:isPrimaryTopicOf wikipedia-en:Mixtilinear_incircles_of_a_triangle
is dbo:wikiPageWikiLink of dbr:Nagel_point dbr:Feuerbach_hyperbola
is foaf:primaryTopic of wikipedia-en:Mixtilinear_incircles_of_a_triangle