Stone–Čech compactification (original) (raw)
En mathématiques, et plus précisément en topologie générale, la compactification de Stone-Čech (découverte en 1937 par Marshall Stone et Eduard Čech) est une technique de construction d'un espace compact prolongeant un espace topologique donné X ; plus précisément, il s'agit de la construction d'une application universelle allant de X vers un espace compact βX.
Property | Value |
---|---|
dbo:abstract | Die Stone–Čech-Kompaktifizierung ist eine Konstruktion der Topologie zur Einbettung eines topologischen Raumes in einen kompakten Hausdorff-Raum. Die Stone–Čech-Kompaktifizierung eines topologischen Raumes ist der „größte“ kompakte Hausdorff-Raum, der als dichte Teilmenge „enthält“. Präzise ausgedrückt bedeutet das, dass jede Abbildung von in einen kompakten Hausdorff-Raum bezüglich eindeutig faktorisierbar ist. Wenn ein Tychonoff-Raum ist, dann ist die Abbildung eine Einbettung. Man kann sich also als dichten Unterraum von vorstellen. Man benötigt das Auswahlaxiom (etwa in Form des Satzes von Tychonoff), um zu zeigen, dass jeder topologische Raum eine Stone–Čech-Kompaktifizierung besitzt. Auch für sehr einfache Räume ist es sehr schwer, eine konkrete Angabe von zu bekommen. Zum Beispiel ist es unmöglich, einen expliziten Punkt aus anzugeben. Die Stone–Čech-Kompaktifizierung wurde von Marshall Stone (1937) und Eduard Čech (1937) unabhängig voneinander gefunden. Čech stützte sich auf Vorarbeiten von Andrei Nikolajewitsch Tichonow, der 1930 gezeigt hatte, dass jeder vollständig reguläre Raum in ein Produkt von abgeschlossenen Intervallen eingebettet werden kann. Die heute so genannte Stone–Čech-Kompaktifizierung ist dann der Abschluss der Einbettung. Stone betrachtete hingegen den Ring der stetigen, reellwertigen Funktionen auf einem topologischen Raum . Bei seiner Konstruktion ist die heutige Stone–Čech-Kompaktifizierung die Menge der Ultrafilter eines Verbands mit einer bestimmten Topologie. (de) In the mathematical discipline of general topology, Stone–Čech compactification (or Čech–Stone compactification) is a technique for constructing a universal map from a topological space X to a compact Hausdorff space βX. The Stone–Čech compactification βX of a topological space X is the largest, most general compact Hausdorff space "generated" by X, in the sense that any continuous map from X to a compact Hausdorff space factors through βX (in a unique way). If X is a Tychonoff space then the map from X to its image in βX is a homeomorphism, so X can be thought of as a (dense) subspace of βX; every other compact Hausdorff space that densely contains X is a quotient of βX. For general topological spaces X, the map from X to βX need not be injective. A form of the axiom of choice is required to prove that every topological space has a Stone–Čech compactification. Even for quite simple spaces X, an accessible concrete description of βX often remains elusive. In particular, proofs that βX \ X is nonempty do not give an explicit description of any particular point in βX \ X. The Stone–Čech compactification occurs implicitly in a paper by Andrey Nikolayevich Tychonoff and was given explicitly by Marshall Stone and Eduard Čech. (en) En mathématiques, et plus précisément en topologie générale, la compactification de Stone-Čech (découverte en 1937 par Marshall Stone et Eduard Čech) est une technique de construction d'un espace compact prolongeant un espace topologique donné X ; plus précisément, il s'agit de la construction d'une application universelle allant de X vers un espace compact βX. (fr) 일반위상수학에서 스톤-체흐 콤팩트화(Stone-Čech compact化, 영어: Stone–Čech compactification)는 어떤 위상 공간에 대하여 대응되는 표준적인 콤팩트 하우스도르프 공간이다. 공역이 콤팩트 하우스도르프 공간인 모든 연속 함수는 그 정의역의 스톤-체흐 콤팩트화로 표준적으로 확장시킬 수 있다. (ko) In de topologie, een deelgebied van de wiskunde, is de Stone-Čech-compactificatie een techniek voor de constructie van een universele afbeelding van een topologische ruimte, Xm op een compacte Hausdorff-ruimte βX. De Stone-Čech-compactificatie βX van een topologische ruimte X is de grootste compacte Hausdorff-ruimte die wordt "gegenereerd" door X, in de zin dat elke afbeelding van X op een unieke manier door βX op een compacte Hausdorff-ruimte factoriseert. Als X een Tychonov-ruimte is, dan is de afbeelding van X op haar beeld in βX een homeomorfisme. Hierdoor kan X worden gezien als een (dichte) deelruimte van βX. Voor algemene topologische ruimten X hoeft de afbeelding van X op βX niet injectief te zijn. (nl) Uzwarcenie Čecha-Stone’a – maksymalne (w pewnym, zdefiniowanym niżej sensie) uzwarcenie przestrzeni całkowicie regularnej spełniającej aksjomat oddzielania . Badania nad tego rodzaju uzwarceniami zostały zainicjowane (z odmiennych punktów widzenia) niezależnie przez czeskiego matematyka Eduarda Čecha i amerykańskiego matematyka Marshalla H. Stone’a w 1937. (pl) La compattificazione di Stone-Čech di uno spazio topologico è uno spazio topologico compatto (indicato con ) tale che ogni funzione continua da verso uno spazio topologico compatto può essere estesa ad una funzione definita su tutto . Generalmente, si assume che sia uno spazio di Tychonoff, perché solo in questo caso estende lo spazio di partenza . Fra le varie compattificazioni di uno spazio topologico, quella di Stone-Čech è la "più grande", contrapposta alla compattificazione di Alexandrov, ottenuta aggiungendo un punto solo. (it) Компактификация Стоуна — Чеха (также стоун-чеховская или чех-стоунова компактификация) — максимальная компактификация вполне регулярного топологического пространства. Компактификация Стоуна — Чеха пространства обычно обозначается как . (ru) Компактифікація - Чеха (також стоун-чехівська або чех-стоунова компактифікація) — максимальна компактифікація цілком регулярного топологічного простору. Компактифікація Стоуна - Чеха простору зазвичай позначається як . (uk) 數學的點集拓撲學中,斯通-切赫緊化(Stone–Čech compactification)是構造出從拓撲空間X到緊緻豪斯多夫空間βX的泛映射的技巧。拓撲空間X的斯通-切赫緊化βX是由X「生成」的最大的緊緻豪斯多夫空間,意即任何從X到緊緻豪斯多夫空間的映射,都可以經由βX分解。若X是吉洪諾夫空間,則從X到其在βX中的像的映射是同胚,因此可以想像X是在βX中的稠密子空間。對一般拓撲空間,從X到βX的映射未必是單射。 證明任何拓撲空間都有斯通-切赫緊化,需用到選擇公理的一個形式。即使X是頗簡單的空間,βX通常也是很難以明白具體地描述。譬如βN \ N非空的各種證明(N是自然數集合),都不會直接描述出βN \ N內的任何一點。 (zh) |
dbo:thumbnail | wiki-commons:Special:FilePath/Stone_cech_diagram.svg?width=300 |
dbo:wikiPageExternalLink | http://www.math.toronto.edu/~drorbn/classes/9293/131/ultra.pdf http://planetmath.org/stonevcechcompactification |
dbo:wikiPageID | 52897 (xsd:integer) |
dbo:wikiPageLength | 20369 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1087339775 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Power_set dbr:Product_topology dbr:Proper_class dbr:Multiplier_algebra dbr:Annals_of_Mathematics dbr:List_of_mathematical_jargon dbr:Riesz–Markov–Kakutani_representation_theorem dbr:Ultrafilter_(set_theory) dbr:Compact_space dbr:Continuous_function dbr:Continuous_map dbr:General_topology dbr:Normal_space dbr:Order_topology dbr:Tychonoff_space dbc:Compactification_(mathematics) dbr:Monoid dbr:Continuum_hypothesis dbr:Corona_set dbr:Andrey_Nikolayevich_Tikhonov dbr:Locally_compact dbr:Stone_space dbr:Compactification_(mathematics) dbr:Complete_Boolean_algebra dbr:Functor dbr:Mathematische_Annalen dbr:Spectrum_of_a_C*-algebra dbr:Measure_space dbr:Banach_space dbr:Weight_of_a_space dbr:Hausdorff_space dbr:Stone_duality dbr:Addition dbr:Adjoint_functor dbr:Aleph_number dbr:Dual_space dbr:Filter_(set_theory) dbr:Forcing_(mathematics) dbr:Ultrafilter dbr:Quotient_space_(topology) dbc:General_topology dbr:Supremum_norm dbr:Homeomorphism dbr:Discrete_topology dbr:ZFC dbr:Reflective_subcategory dbr:Discrete_space dbr:Axiom_of_choice dbr:Boolean_algebra_(structure) dbr:Borel_measure dbr:C*-algebra dbr:Ideal_(order_theory) dbr:Associative dbr:Category_of_topological_spaces dbr:Real_number dbr:Martin's_axiom dbr:Tychonoff's_theorem dbr:Up_to dbr:First_uncountable_ordinal dbr:Zero_set dbr:Parovicenko_space dbr:Universal_property dbr:Set-theoretic_topology dbr:Topological_space dbr:Stone_topology dbr:Transactions_of_the_American_Mathematical_Society dbr:Parovicenko's_theorems dbr:Open_colouring_axiom dbr:Inclusion_functor dbr:Mathematical_Intelligencer dbr:Deleted_Tychonoff_plank dbr:File:Stone_cech_diagram.svg |
dbp:authorlink | Eduard Čech (en) Andrey Nikolayevich Tikhonov (en) Marshall Stone (en) |
dbp:first | Marshall (en) Eduard (en) I.G. (en) Andrey Nikolayevich (en) |
dbp:last | Stone (en) Čech (en) Tychonoff (en) Koshevnikova (en) |
dbp:title | Stone-Čech compactification (en) |
dbp:txt | yes (en) |
dbp:wikiPageUsesTemplate | dbt:Springer dbt:Sectionlink dbt:Annotated_link dbt:Citation dbt:Citation_needed dbt:Cite_book dbt:Em dbt:Reflist dbt:See_also dbt:Sfn dbt:Visible_anchor dbt:Harvs dbt:Narici_Beckenstein_Topological_Vector_Spaces |
dbp:year | 1930 (xsd:integer) 1937 (xsd:integer) |
dct:subject | dbc:Compactification_(mathematics) dbc:General_topology |
gold:hypernym | dbr:Technique |
rdf:type | owl:Thing dbo:TopicalConcept |
rdfs:comment | En mathématiques, et plus précisément en topologie générale, la compactification de Stone-Čech (découverte en 1937 par Marshall Stone et Eduard Čech) est une technique de construction d'un espace compact prolongeant un espace topologique donné X ; plus précisément, il s'agit de la construction d'une application universelle allant de X vers un espace compact βX. (fr) 일반위상수학에서 스톤-체흐 콤팩트화(Stone-Čech compact化, 영어: Stone–Čech compactification)는 어떤 위상 공간에 대하여 대응되는 표준적인 콤팩트 하우스도르프 공간이다. 공역이 콤팩트 하우스도르프 공간인 모든 연속 함수는 그 정의역의 스톤-체흐 콤팩트화로 표준적으로 확장시킬 수 있다. (ko) Uzwarcenie Čecha-Stone’a – maksymalne (w pewnym, zdefiniowanym niżej sensie) uzwarcenie przestrzeni całkowicie regularnej spełniającej aksjomat oddzielania . Badania nad tego rodzaju uzwarceniami zostały zainicjowane (z odmiennych punktów widzenia) niezależnie przez czeskiego matematyka Eduarda Čecha i amerykańskiego matematyka Marshalla H. Stone’a w 1937. (pl) La compattificazione di Stone-Čech di uno spazio topologico è uno spazio topologico compatto (indicato con ) tale che ogni funzione continua da verso uno spazio topologico compatto può essere estesa ad una funzione definita su tutto . Generalmente, si assume che sia uno spazio di Tychonoff, perché solo in questo caso estende lo spazio di partenza . Fra le varie compattificazioni di uno spazio topologico, quella di Stone-Čech è la "più grande", contrapposta alla compattificazione di Alexandrov, ottenuta aggiungendo un punto solo. (it) Компактификация Стоуна — Чеха (также стоун-чеховская или чех-стоунова компактификация) — максимальная компактификация вполне регулярного топологического пространства. Компактификация Стоуна — Чеха пространства обычно обозначается как . (ru) Компактифікація - Чеха (також стоун-чехівська або чех-стоунова компактифікація) — максимальна компактифікація цілком регулярного топологічного простору. Компактифікація Стоуна - Чеха простору зазвичай позначається як . (uk) 數學的點集拓撲學中,斯通-切赫緊化(Stone–Čech compactification)是構造出從拓撲空間X到緊緻豪斯多夫空間βX的泛映射的技巧。拓撲空間X的斯通-切赫緊化βX是由X「生成」的最大的緊緻豪斯多夫空間,意即任何從X到緊緻豪斯多夫空間的映射,都可以經由βX分解。若X是吉洪諾夫空間,則從X到其在βX中的像的映射是同胚,因此可以想像X是在βX中的稠密子空間。對一般拓撲空間,從X到βX的映射未必是單射。 證明任何拓撲空間都有斯通-切赫緊化,需用到選擇公理的一個形式。即使X是頗簡單的空間,βX通常也是很難以明白具體地描述。譬如βN \ N非空的各種證明(N是自然數集合),都不會直接描述出βN \ N內的任何一點。 (zh) Die Stone–Čech-Kompaktifizierung ist eine Konstruktion der Topologie zur Einbettung eines topologischen Raumes in einen kompakten Hausdorff-Raum. Die Stone–Čech-Kompaktifizierung eines topologischen Raumes ist der „größte“ kompakte Hausdorff-Raum, der als dichte Teilmenge „enthält“. Präzise ausgedrückt bedeutet das, dass jede Abbildung von in einen kompakten Hausdorff-Raum bezüglich eindeutig faktorisierbar ist. Wenn ein Tychonoff-Raum ist, dann ist die Abbildung eine Einbettung. Man kann sich also als dichten Unterraum von vorstellen. (de) In the mathematical discipline of general topology, Stone–Čech compactification (or Čech–Stone compactification) is a technique for constructing a universal map from a topological space X to a compact Hausdorff space βX. The Stone–Čech compactification βX of a topological space X is the largest, most general compact Hausdorff space "generated" by X, in the sense that any continuous map from X to a compact Hausdorff space factors through βX (in a unique way). If X is a Tychonoff space then the map from X to its image in βX is a homeomorphism, so X can be thought of as a (dense) subspace of βX; every other compact Hausdorff space that densely contains X is a quotient of βX. For general topological spaces X, the map from X to βX need not be injective. (en) In de topologie, een deelgebied van de wiskunde, is de Stone-Čech-compactificatie een techniek voor de constructie van een universele afbeelding van een topologische ruimte, Xm op een compacte Hausdorff-ruimte βX. De Stone-Čech-compactificatie βX van een topologische ruimte X is de grootste compacte Hausdorff-ruimte die wordt "gegenereerd" door X, in de zin dat elke afbeelding van X op een unieke manier door βX op een compacte Hausdorff-ruimte factoriseert. (nl) |
rdfs:label | Stone-Čech-Kompaktifizierung (de) Compactification de Stone-Čech (fr) Compattificazione di Stone-Čech (it) 스톤-체흐 콤팩트화 (ko) Stone-Čech-compactificatie (nl) Uzwarcenie Čecha-Stone’a (pl) Stone–Čech compactification (en) Компактификация Стоуна — Чеха (ru) Компактифікація Стоуна — Чеха (uk) 斯通-切赫緊化 (zh) |
rdfs:seeAlso | dbr:Stone_topology |
owl:sameAs | freebase:Stone–Čech compactification wikidata:Stone–Čech compactification dbpedia-de:Stone–Čech compactification dbpedia-fr:Stone–Čech compactification dbpedia-he:Stone–Čech compactification dbpedia-it:Stone–Čech compactification dbpedia-ko:Stone–Čech compactification dbpedia-nl:Stone–Čech compactification dbpedia-pl:Stone–Čech compactification dbpedia-ru:Stone–Čech compactification dbpedia-uk:Stone–Čech compactification dbpedia-vi:Stone–Čech compactification dbpedia-zh:Stone–Čech compactification https://global.dbpedia.org/id/vbCm |
prov:wasDerivedFrom | wikipedia-en:Stone–Čech_compactification?oldid=1087339775&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Stone_cech_diagram.svg |
foaf:isPrimaryTopicOf | wikipedia-en:Stone–Čech_compactification |
is dbo:knownFor of | dbr:Marshall_H._Stone |
is dbo:wikiPageDisambiguates of | dbr:Čech |
is dbo:wikiPageRedirects of | dbr:Stone-Čech_compactification_Theorem dbr:Čech-Stone_compactification dbr:Čech–Stone_compactification dbr:Cech-Stone_compactification dbr:Cech–Stone_compactification dbr:Stone-AOEech_compactification dbr:Stone-Czech_compactification dbr:Stone-Čech_compactification dbr:Stone–Cech_compactification dbr:Štone-Cech_compactification dbr:Stone-Cech dbr:Stone-Cech_Compactification dbr:Stone-Cech_compactification dbr:Stone-Chech_compactification dbr:Stone-cech_compactification dbr:Stone-chech dbr:Stone_Cech_Compactification dbr:Stone_Cech_compactification dbr:Stone_cech_compactification dbr:Stone–Chech_compactification dbr:Stone–Čech_compactification_Theorem dbr:ΒN |
is dbo:wikiPageWikiLink of | dbr:Cardinality_of_the_continuum dbr:Envelope_(category_theory) dbr:List_of_eponyms_(A–K) dbr:List_of_eponyms_(L–Z) dbr:Multiplier_algebra dbr:Approach_space dbr:Beth_number dbr:Ultrafilter_(set_theory) dbr:Dona_Strauss dbr:Von_Neumann_algebra dbr:Number_line dbr:Measure_(mathematics) dbr:Ellis–Numakura_lemma dbr:Normal_space dbr:Piecewise_syndetic_set dbr:Tychonoff_space dbr:Alexandroff_extension dbr:Glossary_of_set_theory dbr:Corona_set dbr:Andrey_Nikolayevich_Tikhonov dbr:Stone-Čech_compactification_Theorem dbr:Stone_space dbr:Closed_set dbr:Compactification_(mathematics) dbr:Completely_metrizable_space dbr:Čech-Stone_compactification dbr:Čech–Stone_compactification dbr:Tychonoff_plank dbr:Supercompact_space dbr:Noncommutative_topology dbr:Adjoint_functors dbr:Cech-Stone_compactification dbr:Cech–Stone_compactification dbr:Locally_compact_space dbr:Eduard_Čech dbr:Filters_in_topology dbr:Banach_limit dbr:Daniel_Kolak dbr:List_of_algebraic_constructions dbr:Ultrafilter dbr:Partition_regularity dbr:Counterexamples_in_Topology dbr:Johannes_de_Groot dbr:Realcompact_space dbr:Remote_point dbr:Reflective_subcategory dbr:Donald_Knuth dbr:Axiom_of_choice dbr:Marshall_H._Stone dbr:Filter_quantifier dbr:Long_line_(topology) dbr:Scheme_(mathematics) dbr:Tychonoff's_theorem dbr:Čech dbr:Extremally_disconnected_space dbr:List_of_topologies dbr:Wallman_compactification dbr:Parovicenko_space dbr:Universal_property dbr:Polyadic_space dbr:Stone-AOEech_compactification dbr:Stone-Czech_compactification dbr:Stone-Čech_compactification dbr:Stone–Cech_compactification dbr:Štone-Cech_compactification dbr:Stone-Cech dbr:Stone-Cech_Compactification dbr:Stone-Cech_compactification dbr:Stone-Chech_compactification dbr:Stone-cech_compactification dbr:Stone-chech dbr:Stone_Cech_Compactification dbr:Stone_Cech_compactification dbr:Stone_cech_compactification dbr:Stone–Chech_compactification dbr:Stone–Čech_compactification_Theorem dbr:ΒN |
is dbp:knownFor of | dbr:Eduard_Čech dbr:Marshall_H._Stone |
is foaf:primaryTopic of | wikipedia-en:Stone–Čech_compactification |