Pairwise independence (original) (raw)
In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent. Pairwise independent random variables with finite variance are uncorrelated. A pair of random variables X and Y are independent if and only if the random vector (X, Y) with joint cumulative distribution function (CDF) satisfies or equivalently, their joint density satisfies
Property | Value |
---|---|
dbo:abstract | In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent. Pairwise independent random variables with finite variance are uncorrelated. A pair of random variables X and Y are independent if and only if the random vector (X, Y) with joint cumulative distribution function (CDF) satisfies or equivalently, their joint density satisfies That is, the joint distribution is equal to the product of the marginal distributions. Unless it is not clear in context, in practice the modifier "mutual" is usually dropped so that independence means mutual independence. A statement such as " X, Y, Z are independent random variables" means that X, Y, Z are mutually independent. (en) В теории вероятностей, попарно независимый набор случайных величин — это множество случайных величин, любая пара которых независима. Любой набор независимых в совокупности случайных величин является попарно независимым, но не все попарно независимые наборы являются независимыми в совокупности. Попарно независимые случайные величины с конечной дисперсией не являются коррелированными. На практике, если это не выводится из контекста, считается, что независимость означает независимость в совокупности. Таким образом, предложение вида «, , являются независимыми случайными величинами» означает, что , , являются независимыми в совокупности. (ru) |
dbo:wikiPageID | 804155 (xsd:integer) |
dbo:wikiPageLength | 11447 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1097479232 (xsd:integer) |
dbo:wikiPageWikiLink | dbc:Theory_of_probability_distributions dbr:Bernoulli_distribution dbc:Independence_(probability_theory) dbr:Joint_probability_distribution dbr:Upper_and_lower_bounds dbr:Variance dbr:Dependent_and_independent_variables dbr:Complete_graph dbr:Modular_arithmetic dbr:MAXEkSAT dbr:Star_(graph_theory) dbr:Closed-form_expression dbr:Feasible_region dbr:Fréchet_inequalities dbr:Pairwise_disjoint dbr:Spanning_tree dbr:K-independent_hashing dbr:Probability dbr:Probability_theory dbr:Random_variable dbr:Univariate dbr:Marginal_distribution dbr:Boole's_inequality dbr:Random_variables dbr:Message_authentication_code dbr:Sorting dbr:Uncorrelated dbr:Statistical_independence dbr:Joint_distribution dbr:Bivariate_distribution dbr:Mutual_independence dbr:Mutually_independent dbr:Marginal_probability_distribution dbr:Wikt:pairwise |
dbp:wikiPageUsesTemplate | dbt:NumBlk dbt:Reflist dbt:EquationRef dbt:EquationNote |
dct:subject | dbc:Theory_of_probability_distributions dbc:Independence_(probability_theory) |
rdfs:comment | In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent. Pairwise independent random variables with finite variance are uncorrelated. A pair of random variables X and Y are independent if and only if the random vector (X, Y) with joint cumulative distribution function (CDF) satisfies or equivalently, their joint density satisfies (en) В теории вероятностей, попарно независимый набор случайных величин — это множество случайных величин, любая пара которых независима. Любой набор независимых в совокупности случайных величин является попарно независимым, но не все попарно независимые наборы являются независимыми в совокупности. Попарно независимые случайные величины с конечной дисперсией не являются коррелированными. (ru) |
rdfs:label | Pairwise independence (en) Попарная независимость (ru) |
owl:sameAs | freebase:Pairwise independence wikidata:Pairwise independence dbpedia-ru:Pairwise independence https://global.dbpedia.org/id/fmWd |
prov:wasDerivedFrom | wikipedia-en:Pairwise_independence?oldid=1097479232&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Pairwise_independence |
is dbo:wikiPageDisambiguates of | dbr:Pairwise |
is dbo:wikiPageRedirects of | dbr:Pairwise_independent |
is dbo:wikiPageWikiLink of | dbr:Lévy_process dbr:Joint_probability_distribution dbr:List_of_mathematical_examples dbr:List_of_probability_topics dbr:Conditional_probability dbr:Count–min_sketch dbr:Glossary_of_probability_and_statistics dbr:Multivariate_normal_distribution dbr:MAXEkSAT dbr:Fréchet_inequalities dbr:Pairwise dbr:Central_limit_theorem dbr:Dual_of_BCH_is_an_independent_source dbr:Probability dbr:Probability_theory dbr:Random_variable dbr:Law_of_large_numbers dbr:Boole's_inequality dbr:Borel–Cantelli_lemma dbr:Independence_(probability_theory) dbr:Independent_and_identically_distributed_random_variables dbr:Catalog_of_articles_in_probability_theory dbr:Randomized_algorithm dbr:List_of_statistics_articles dbr:Stochastic_dynamic_programming dbr:Pairwise_independent |
is foaf:primaryTopic of | wikipedia-en:Pairwise_independence |