dbo:abstract |
In musical tuning theory, a Pythagorean interval is a musical interval with frequency ratio equal to a power of two divided by a power of three, or vice versa. For instance, the perfect fifth with ratio 3/2 (equivalent to 31/ 21) and the perfect fourth with ratio 4/3 (equivalent to 22/ 31) are Pythagorean intervals. All the intervals between the notes of a scale are Pythagorean if they are tuned using the Pythagorean tuning system. However, some Pythagorean intervals are also used in other tuning systems. For instance, the above-mentioned Pythagorean perfect fifth and fourth are also used in just intonation. (en) 畢氏音程(英語:Pythagorean interval)是一個音樂理論,由著名的古希臘哲學家畢達哥拉斯所提倡的,這理論為日後西方音樂學,特別是解釋音程時提供了非常清晰的介定。 畢氏音程的基本原則是,凡由兩個不同音高的音所構成的音程,它們的頻率關係必然是3的次方除以2的次方(),或是2的次方除以3的次方(),當中m和n皆為正整數。 以為例,純四度的頻率關係是,即4:3;純五度為,即3:2;至於純八度則是,也就是2:1。 由以上的純音程,通過特定的計算方法,便可以把一個八度包含的全部音符都找出來,而且由任何兩個音所組成的音程,它們的頻率關係仍然保持著或。這種調音的方法,亦稱作(Pythagorean tuning)。由畢氏調律所調出來的音階,和現時常用的十二平均律音階有一點差別。以大調為例,畢氏調律的大調,第3、6、7音的頻率稍為高一點。 (zh) |
dbo:thumbnail |
wiki-commons:Special:FilePath/Perfect_fifth_on_C.png?width=300 |
dbo:wikiPageExternalLink |
http://www.medieval.org/emfaq/harmony/marchetmf.html wiki-commons:File:Interval_ratios_in_D-based_symmetric_Pythagorean_tuning.PNG wiki-commons:File:Interval_ratios_in_D-based_symmet...hagorean_tuning_(powers_of_2_&_3).PNG |
dbo:wikiPageID |
3793408 (xsd:integer) |
dbo:wikiPageInterLanguageLink |
dbpedia-cs:Ditón dbpedia-de:Ditonus dbpedia-eo:Ditono dbpedia-es:Ditono dbpedia-nl:Ditonus dbpedia-ru:Дитон |
dbo:wikiPageLength |
14315 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1086520205 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Pythagorean_comma dbr:Pythagorean_tuning dbr:MIDI dbr:List_of_meantone_intervals dbr:Vice_versa dbr:Interval_ratio dbr:List_of_intervals_in_5-limit_just_intonation dbr:Whole-tone_scale dbr:Consonance_and_dissonance dbr:Generated_collection dbr:Equal_temperament dbr:Minor_second dbr:Shí-èr-lǜ dbr:Pythagorean_apotome dbr:Major_second dbr:Major_seventh dbr:Major_sixth dbr:Major_third dbr:Meantone_temperament dbr:Cent_(music) dbc:3-limit_tuning_and_intervals dbr:Ditone dbr:Ancient_Greek dbr:Exponentiation dbr:Diminished_fifth dbr:Diminished_fourth dbr:Diminished_octave dbr:Diminished_second dbr:Diminished_seventh dbr:Diminished_sixth dbr:Diminished_third dbr:Epogdoon dbr:Perfect_fifth dbr:Størmer's_theorem dbr:Just_intonation dbr:Syntonic_comma dbr:Minor_third dbr:Musical_tuning dbr:Augmented_fifth dbr:Augmented_fourth dbr:Augmented_second dbr:Augmented_seventh dbr:Augmented_sixth dbr:Augmented_third dbr:Augmented_unison dbr:Octave dbr:Minor_seventh dbr:Minor_sixth dbr:Unison dbr:Pythagorean_limma dbr:Perfect_fourth dbr:Superparticular_number dbr:Semiditone dbr:Musical_interval dbr:File:Just_perfect_fifth_on_D.png dbr:File:Perfect_fifth_on_C.png dbr:File:Perfect_fourth_on_C.png dbr:File:Pythagorean_diatonic_scale_on_C.png dbr:File:Diminished_fifth_tritone_on_C.png dbr:File:Interval_ratios_in_D-based_symmet...tuning_(powers_for_large_numbers).PNG dbr:File:Lesser_just_minor_seventh_on_C.png dbr:File:Pythagorean_augmented_fourth_on_C.png dbr:File:Ditone_on_C.png dbr:File:Pythagorean_minor_sixth_on_C.png dbr:File:Semiditone_on_C.png dbr:File:Major_second_on_C.svg dbr:File:Pythagorean_major_seventh_on_C.png dbr:File:Pythagorean_major_sixth_on_C.png |
dbp:wikiPageUsesTemplate |
dbt:Intervals dbt:Audio dbt:Lead_rewrite dbt:Reflist dbt:Short_description |
dct:subject |
dbc:3-limit_tuning_and_intervals |
gold:hypernym |
dbr:Interval |
rdfs:comment |
畢氏音程(英語:Pythagorean interval)是一個音樂理論,由著名的古希臘哲學家畢達哥拉斯所提倡的,這理論為日後西方音樂學,特別是解釋音程時提供了非常清晰的介定。 畢氏音程的基本原則是,凡由兩個不同音高的音所構成的音程,它們的頻率關係必然是3的次方除以2的次方(),或是2的次方除以3的次方(),當中m和n皆為正整數。 以為例,純四度的頻率關係是,即4:3;純五度為,即3:2;至於純八度則是,也就是2:1。 由以上的純音程,通過特定的計算方法,便可以把一個八度包含的全部音符都找出來,而且由任何兩個音所組成的音程,它們的頻率關係仍然保持著或。這種調音的方法,亦稱作(Pythagorean tuning)。由畢氏調律所調出來的音階,和現時常用的十二平均律音階有一點差別。以大調為例,畢氏調律的大調,第3、6、7音的頻率稍為高一點。 (zh) In musical tuning theory, a Pythagorean interval is a musical interval with frequency ratio equal to a power of two divided by a power of three, or vice versa. For instance, the perfect fifth with ratio 3/2 (equivalent to 31/ 21) and the perfect fourth with ratio 4/3 (equivalent to 22/ 31) are Pythagorean intervals. (en) |
rdfs:label |
Pythagorean interval (en) 畢氏音程 (zh) |
owl:sameAs |
freebase:Pythagorean interval wikidata:Pythagorean interval dbpedia-fa:Pythagorean interval dbpedia-zh:Pythagorean interval https://global.dbpedia.org/id/Tsqo |
prov:wasDerivedFrom |
wikipedia-en:Pythagorean_interval?oldid=1086520205&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/Diminished_fifth_tritone_on_C.png wiki-commons:Special:FilePath/Interval_ratios_in_D-based_symmetric_Pythagorean_tuning.png wiki-commons:Special:FilePath/Interval_ratios_in_D-...hagorean_tuning_(powers_of_2_&_3).png wiki-commons:Special:FilePath/Lesser_just_minor_seventh_on_C.png wiki-commons:Special:FilePath/Pythagorean_major_seventh_on_C.png wiki-commons:Special:FilePath/Pythagorean_major_sixth_on_C.png wiki-commons:Special:FilePath/Pythagorean_minor_sixth_on_C.png wiki-commons:Special:FilePath/Semiditone_on_C.png wiki-commons:Special:FilePath/Ditone_on_C.png wiki-commons:Special:FilePath/Just_perfect_fifth_on_D.png wiki-commons:Special:FilePath/Major_second_on_C.svg wiki-commons:Special:FilePath/Perfect_fourth_on_C.png wiki-commons:Special:FilePath/Pythagorean_augmented_fourth_on_C.png wiki-commons:Special:FilePath/Interval_ratios_in_D-...tuning_(powers_for_large_numbers).png wiki-commons:Special:FilePath/Pythagorean_diatonic_scale_on_C.png wiki-commons:Special:FilePath/Perfect_fifth_on_C.png |
foaf:isPrimaryTopicOf |
wikipedia-en:Pythagorean_interval |
is dbo:wikiPageRedirects of |
dbr:Tertium_major dbr:Tertium_minor dbr:Tertius_major dbr:Tertius_minor dbr:Semitonium dbr:List_of_Pythagorean_intervals dbr:Pythagorean_intervals dbr:Pythagorean_lemma dbr:Pythagorean_major_seventh dbr:Pythagorean_ratio |
is dbo:wikiPageWikiLink of |
dbr:List_of_general_music_articles_in_Rees's_Cyclopaedia dbr:Tetractys dbr:David_D'Or dbr:Index_of_ancient_Greece-related_articles dbr:Index_of_music_articles dbr:Limit_(music) dbr:Limma dbr:List_of_intervals_in_5-limit_just_intonation dbr:Mode_(music) dbr:Musical_system_of_ancient_Greece dbr:Musical_temperament dbr:The_Well-Tuned_Piano dbr:Lydian_Chromatic_Concept_of_Tonal_Organization dbr:Shí-èr-lǜ dbr:Steelpan dbr:String_harmonic dbr:Harmonic dbr:Major_second dbr:Tritone dbr:Ditone dbr:Five-limit_tuning dbr:Tertium_major dbr:Tertium_minor dbr:Tertius_major dbr:Tertius_minor dbr:Just_intonation dbr:Syntonic_comma dbr:Minor_third dbr:Octave dbr:Semitonium dbr:Kleinzeit dbr:Diapason dbr:List_of_things_named_after_Pythagoras dbr:Semitone dbr:Tonus dbr:List_of_Pythagorean_intervals dbr:Pythagorean_intervals dbr:Pythagorean_lemma dbr:Pythagorean_major_seventh dbr:Pythagorean_ratio |
is foaf:primaryTopic of |
wikipedia-en:Pythagorean_interval |