Von Neumann paradox (original) (raw)
En mathématiques, et plus précisément en géométrie plane, le paradoxe de von Neumann, dû à John von Neumann en 1929, est un résultat analogue au paradoxe de Banach-Tarski, montrant que l'on peut, en utilisant l'axiome du choix, décomposer un carré unité en un nombre fini d'ensembles de points, transformer ces ensembles par des transformations affines conservant les aires, et obtenir deux carrés unités.
Property | Value |
---|---|
dbo:abstract | En mathématiques, et plus précisément en géométrie plane, le paradoxe de von Neumann, dû à John von Neumann en 1929, est un résultat analogue au paradoxe de Banach-Tarski, montrant que l'on peut, en utilisant l'axiome du choix, décomposer un carré unité en un nombre fini d'ensembles de points, transformer ces ensembles par des transformations affines conservant les aires, et obtenir deux carrés unités. (fr) In mathematics, the von Neumann paradox, named after John von Neumann, is the idea that one can break a planar figure such as the unit square into sets of points and subject each set to an area-preserving affine transformation such that the result is two planar figures of the same size as the original. This was proved in 1929 by John von Neumann, assuming the axiom of choice. It is based on the earlier Banach–Tarski paradox, which is in turn based on the Hausdorff paradox. Banach and Tarski had proved that, using isometric transformations, the result of taking apart and reassembling a two-dimensional figure would necessarily have the same area as the original. This would make creating two unit squares out of one impossible. But von Neumann realized that the trick of such so-called paradoxical decompositions was the use of a group of transformations that include as a subgroup a free group with two generators. The group of area-preserving transformations (whether the special linear group or the special affine group) contains such subgroups, and this opens the possibility of performing paradoxical decompositions using them. (en) |
dbo:wikiPageID | 20234262 (xsd:integer) |
dbo:wikiPageLength | 9192 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1102806974 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Cardinality_of_the_continuum dbr:Miklós_Laczkovich dbr:John_von_Neumann dbr:Cantor-Bernstein-Schroeder_theorem dbc:Group_theory dbc:Mathematical_paradoxes dbr:Mathematics dbr:One-to-one_correspondence dbr:SL2(R) dbr:Generating_set_of_a_group dbr:Dense_set dbr:Subgroup dbr:Banach–Tarski_paradox dbr:Hausdorff_paradox dbr:Amenable_group dbr:Banach_measure dbc:Theorems_in_the_foundations_of_mathematics dbr:Group_(mathematics) dbc:Measure_theory dbr:Axiom_of_choice dbr:Free_group dbr:Injection_(mathematics) dbr:Solvable_group dbr:Unit_square dbr:Special_affine_group dbr:Isometric_transformation dbr:Problem_of_measure |
dbp:wikiPageUsesTemplate | dbt:Annotated_link dbt:Reflist |
dct:subject | dbc:Group_theory dbc:Mathematical_paradoxes dbc:Theorems_in_the_foundations_of_mathematics dbc:Measure_theory |
gold:hypernym | dbr:Idea |
rdf:type | yago:WikicatMathematicsParadoxes yago:WikicatTheoremsInTheFoundationsOfMathematics yago:Abstraction100002137 yago:Communication100033020 yago:Contradiction107206887 yago:Falsehood106756407 yago:Message106598915 yago:Paradox106724559 yago:Proposition106750804 dbo:Organisation yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment | En mathématiques, et plus précisément en géométrie plane, le paradoxe de von Neumann, dû à John von Neumann en 1929, est un résultat analogue au paradoxe de Banach-Tarski, montrant que l'on peut, en utilisant l'axiome du choix, décomposer un carré unité en un nombre fini d'ensembles de points, transformer ces ensembles par des transformations affines conservant les aires, et obtenir deux carrés unités. (fr) In mathematics, the von Neumann paradox, named after John von Neumann, is the idea that one can break a planar figure such as the unit square into sets of points and subject each set to an area-preserving affine transformation such that the result is two planar figures of the same size as the original. This was proved in 1929 by John von Neumann, assuming the axiom of choice. It is based on the earlier Banach–Tarski paradox, which is in turn based on the Hausdorff paradox. (en) |
rdfs:label | Paradoxe de von Neumann (fr) Von Neumann paradox (en) |
owl:sameAs | freebase:Von Neumann paradox yago-res:Von Neumann paradox wikidata:Von Neumann paradox dbpedia-fr:Von Neumann paradox https://global.dbpedia.org/id/36isA |
prov:wasDerivedFrom | wikipedia-en:Von_Neumann_paradox?oldid=1102806974&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Von_Neumann_paradox |
is dbo:wikiPageWikiLink of | dbr:John_von_Neumann dbr:List_of_paradoxes dbr:List_of_scientific_laws_named_after_people dbr:Nicholas_Metropolis dbr:List_of_things_named_after_John_von_Neumann |
is foaf:primaryTopic of | wikipedia-en:Von_Neumann_paradox |