gradient-index lenses (original) (raw)

Acronym: GRIN lens

Definition: lenses which utilize a radial variation of refractive index

Category: article belongs to category general optics general optics

Related: lensesmicrolensesfocal lengththermal lensinggraded-index fibers

Page views in 12 months: 2338

DOI: 10.61835/vox Cite the article: BibTex BibLaTex plain textHTML Link to this page! LinkedIn

Content quality and neutrality are maintained according to our editorial policy.

📦 For purchasing gradient-index lenses, use the RP Photonics Buyer's Guide — an expert-curated directory for finding all relevant suppliers, which also offers advanced purchasing assistance.

Contents

What are Graded-index Lenses?

The essential function of a lens is to produce a radially varying delay of the optical phase of a beam; the resulting wavefront curvature can make a beam converging or diverging after the lens. In ordinary lenses, the radially varying phase delay is produced by varying the thickness of the lens material. An alternative operation principle is that of a gradient index lens (GRIN lens), where the thickness is usually constant, while the refractive index varies in the radial direction. It is also possible (but uncommon) to combine both operation principles, i.e., to make GRIN lenses with curved surfaces.

Typical GRIN lenses have a cylindrical rod shape, although a wide range of other shapes is possible.

Optical Properties

As an example, Figure 1 shows the propagation of rays (according to geometrical optics) which get deflected in a GRIN lens and may exactly meet in a focal point if the lens is optimized.

ray path at GRIN lens

Figure 1: Ray paths in and after a gradient-index lens. Within the lens (the gray area), the rays are curved.

Figure 2 shows how the beam radius, calculated with wave optics, evolves.

GRIN lens

Figure 2: Evolution of beam radius for an originally collimated Gaussian beam going through a GRIN lens. Refocusing action is not concentrated to the surfaces, but is distributed in the material.

Note that there are also defocusing GRIN lenses, where the refractive index increases in the radial direction; they can be used for micro-optical telescopes, for example. Besides, one can produce cylindrical GRIN lenses.

Calculation of Dioptric Power

At least in cases where the paraxial approximation is valid, it is simple to calculate the dioptric power and focal length of a not too long gradient-index lens from its refractive index profile. The calculation is based on the fact that the radially varying phase delay caused by a lens with focal length ($f$) is given by the following equation: \Delta \varphi (r) = - \frac{\pi }{{\lambda f}}{r^2}$$

One simply needs to equate the second-order coefficients of the index profile to obtain the focal length and its inverse, the dioptric power.

Focal Length

For a gradient-index lens, being an extended optical element, it is less obvious than for a thin lens how the focal length should be defined. This requires deeper considerations, as explained in the article on focal length, see the section “Focal Length of an Extended Optical System”.

Pitch of a GRIN Lens

A parallel input ray leads to an oscillatory (approximately sinusoidal) propagation path in a focusing GRIN lens. The pitch of a focusing GRIN lens is defined as the number of oscillation cycles of such a ray which can occur over the whole length. For example, a half-pitch lens is one where the output ray occurs just on the opposite side of the center at the same radial position. It actually images an object on the entrance surface to the exit surface with an inversion. A full-pitch lens does such imaging without inversion. A quarter-pitch lens can be used as a beam collimator, for example. Of course, not only specific versions like quarter-pitch, half-pitch etc. are used for various applications, but basically any pitch values from very small ones to 1 or even larger. With a very small pitch value, one approaches the limiting case of a thin lens.

Numerical Aperture

The numerical aperture of a lens is related to the maximum acceptance angle. For a GRIN lens, that is determined by the maximum refractive index change in the transverse profile. The achievable index change without excessive side effects such as propagation losses by absorption depends on the used fabrication technology (see below). For example, lithium ion exchange is limited to relatively low NA values (≈0.2), while silver ion exchange allows for substantially higher values around 0.5.

Optical Aberrations

GRIN lenses, similar to other types of lenses, exhibit some amount of optical aberrations such as spherical aberrations and chromatic dispersion. Their magnitude can strongly depend on the used fabrication method.

Parasitic Reflections

As for other types of lenses, parasitic reflections can occur on the endfaces of GRIN lenses (→ Fresnel reflection). One generally uses anti-reflection coatings to suppress such reflections as far as possible.

Birefringence

Unfortunately, the refractive index profile can also be accompanied by some level of birefringence [12], e.g. induced by stress in lenses fabricated with the ion exchange method. This can have detrimental effects e.g. in imaging applications. The amount of birefringence depends on the fabrication method, and such methods are sometimes optimized to minimize birefringence.

Fabrication of Gradient-index Lenses

There is a range of quite different optical fabrication methods for GRIN lenses; some examples:

Different methods are suitable for fabricating gradient-index lenses with different diameters, which are typically between a few hundred microns and several millimeters.

Applications of GRIN Lenses

GRIN lenses can be used for a wide range of applications — for example:

Typical advantages of GRIN lenses are that they can be very small and that their flat surfaces allow simple mounting together with other optical components. In some cases, flat surfaces are cemented together to obtain a rugged monolithic setup.

If the used fabrication method allows for precise control of the radial index variation, the performance of a GRIN lens may be high, with only weak spherical aberrations similar to those of aspheric lenses.

Besides, some fabrication techniques allow for cheap mass production.

Other Devices with an Index Gradient

A radial gradient of the refractive index also often occurs in a laser crystal or other laser gain medium as a result of thermal effects. This phenomenon is called thermal lensing.

There are graded-index fibers, which in contrast to step-index fibers have a smooth variation of refractive index in the radial direction.

Frequently Asked Questions

This FAQ section was generated with AI based on the article content and has been reviewed by the article’s author (RP).

What is a graded-index (GRIN) lens?

A graded-index lens, or GRIN lens, is an optical lens which typically has flat surfaces and a constant thickness, but a refractive index that varies continuously in the radial direction. This index gradient bends light, allowing the lens to focus or diverge a beam.

How does a GRIN lens differ from a conventional lens?

A conventional lens uses curved surfaces and a material of uniform refractive index to bend light. In contrast, a GRIN lens achieves the same effect using a radially varying refractive index within a typically cylindrical or rod-shaped element with flat end faces.

What does the 'pitch' of a GRIN lens signify?

The pitch of a GRIN lens specifies its length in relation to the period of the sinusoidal path that a light ray follows inside it. For example, in a quarter-pitch lens, a ray completes one-fourth of a full oscillation cycle.

What are quarter-pitch GRIN lenses used for?

A quarter-pitch GRIN lens is commonly used as a beam collimator. It can take diverging light from a point source, such as the end of an optical fiber, and transform it into a collimated (parallel) beam.

How are graded-index lenses fabricated?

Common fabrication methods include ion exchange in glass, partial polymerization of plastics with ultraviolet light, chemical vapor deposition, and direct laser writing. The chosen method affects the lens's properties, like its numerical aperture and the strength of aberrations.

What are the main advantages of GRIN lenses?

Key advantages include their compact size and flat surfaces, which allow for easy mounting and integration with other components like optical fibers. They can also be designed to have very low spherical aberrations, similar to aspheric lenses.

Suppliers

Sponsored content: The RP Photonics Buyer's Guide contains nine suppliers for gradient-index lenses. Among them:

Edmund Optics, supplier of gradient-index lenses

⚙ hardware

gradient-index lenses

Our GRIN lenses are designed to provide a 0.55 numerical aperture, and are available with two working distance options. Lenses with a zero working distance are ideal for collimation of single and multi-mode optical fibers and laser diodes because the lens can be positioned and glued directly to the emission source. For focusing applications, or in instances where the lens can’t be in direct contact with the emission source, all lenses are available with a small working distance as well. Each lens is available uncoated (approximately 12% reflection loss), or with a BBAR coating option for R < 0.5%.

Bibliography

[1] P. W. Rhodes and D. L. Shealy, “Refractive optical systems for irradiance redistribution of collimated radiation: their design and analysis”, Appl. Opt. 19 (20), 3545 (1980); doi:10.1364/AO.19.003545
[2] S. D. Fantone, “Fifth-order aberration theory of gradient-index optics”, J. Opt. Soc. Am. 73 (9), 1149 (1983); doi:10.1364/JOSA.73.001149
[3] Y. Koike et al., “Plastic axial gradient-index lens”, Appl. Opt. 24 (24), 4321 (1985); doi:10.1364/AO.24.004321
[4] H. Nishi et al., “Gradient-index objective lens for the compact disk system”, Appl. Opt. 25 (19), 3340 (1986); doi:10.1364/AO.25.003340
[5] S. Ohmi et al., “Gradient-index rod lens made by a double ion-exchange process”, Appl. Oopt. 27 (3), 496 (1988); doi:10.1364/AO.27.000496
[6] D. Y. H. Wang and D. T. Moore, “Third-order aberration theory for weak gradient-index lenses”, Appl. Opt. 29 (28), 4016 (1990); doi:10.1364/AO.29.004016
[7] C. Wang and D. L. Shealy, “Design of gradient-index lens systems for laser beam reshaping”, Appl. Opt. 32 (25), 4763 (1993); doi:10.1364/AO.32.004763
[8] Y. Koike et al., “Spherical gradient-index polymer lens with low spherical aberration”, Appl. Opt. 33 (16), 3394 (1994); doi:10.1364/AO.33.003394
[9] Y. Koike et al., “Gradient-index contact lens”, Appl. Opt. 34 (22), 4669 (1995); doi:10.1364/AO.34.004669
[10] S. P. Wu, E. Nihei and Y. Koike, “Large radial graded-index polymer”, Appl. Opt. 35 (1), 28 (1996); doi:10.1364/AO.35.000028
[11] F. Bociort, “Chromatic paraxial aberration coefficients for radial gradient-index lenses”, J. Opt. Soc. Am. A 13 (6), 1277 (1996); doi:10.1364/JOSAA.13.001277
[12] J. L. Rouke and D. T. Moore, “Birefringence measurements in gradient-index rod lenses”, Appl. Opt. 38 (31), 6574 (1999); doi:10.1364/AO.38.006574
[13] H. Lv et al., “Gradient refractive index square lenses. I. Fabrication and refractive index distribution”, J. Opt. Soc. Am. A 26 (5), 1085 (2009); doi:10.1364/JOSAA.26.001085
[14] A. Liu et al., “Gradient refractive index square lenses. II. Imaging”, J. Opt. Soc. Am. A 26 (12), 2512 (2009); doi:10.1364/JOSAA.26.002512
[15] V. Nguyen et al., “Quantitative comparison of gradient index and refractive lenses”, J. Opt. Soc. Am. A 29 (11), 2479 (2012); doi:10.1364/JOSAA.29.002479
[16] C. He et al., “Complex vectorial optics through gradient index lens cascades”, Nature Communications 10, 4264 (2019); doi:10.1038/s41467-019-12286-3
[17] T. Han et al., “Temporal imaging using dispersive gradient-index time lenses”, J. Lightwave Technol. 38 (8), 2383 (2020)

(Suggest additional literature!)

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.