Transcriptional Regulation of Myelopoiesis (original) (raw)
Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages.Nature. 2000;404:193–197. ArticleCASPubMed Google Scholar
Lacaud G, Carlsson L, Keller G. Identification of a fetal hemato-poietic precursor with B cell, T cell, and macrophage potential.Immunity. 1998;9:827–838. ArticlePubMedCAS Google Scholar
Montecino-Rodriguez E, Leathers H, Dorshkind K. Bipotential B-macrophage progenitors are present in adult bone marrow.Nat Immunol. 2001;2:83–88. ArticlePubMedCAS Google Scholar
Manz MG, Traver D, Miyamoto T, Weissman IL, Akashi K. Dendritic cell potentials of early lymphoid and myeloid progenitors.Blood. 2001;97:3333–3341. ArticlePubMedCAS Google Scholar
Ward AC, Loeb DM, Soede-Bobok AA, Touw I, Friedman AD. Regulation of granulopoiesis by transcription factors and cytokine signals.Leukemia. 2000;14:973–990. ArticlePubMedCAS Google Scholar
Lieschke GJ, Grail D, Hodgson G, et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor deficiency, and impaired neutrophil mobilization.Blood. 1994;84:1737–1746. PubMedCAS Google Scholar
Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice.Cell. 1996;5: 491–501. CAS Google Scholar
Liu F, Poursine-Laurent J, Wu HY, Link DC. Interleukin-6 and the granulocyte colony-stimulating factor receptor are major independent regulators of granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation.Blood. 1997; 90:2583–2590. PubMedCAS Google Scholar
Seymour JF, Lieschke GJ, Grail D, Quilici C, Hodgson G, Dunn AR. Mice lacking both granulocyte colony stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amy-loidosis, and reduced long-term survival.Blood. 1997;90:3037–3049. PubMedCAS Google Scholar
Wang W, Wang X, Ward AC, Touw IP, Friedman AD. C/EBPalpha and G-CSF receptor signals cooperate to induce the myeloperoxidase and neutrophil elastase genes.Leukemia. 2001;15:779–786. ArticlePubMedCAS Google Scholar
Nakajima H, Ihle JN. Granulocyte colony-stimulating factor regulates myeloid differentiation through CCAAT/enhancer-binding protein epsilon.Blood. 2001;98:897–905. ArticlePubMedCAS Google Scholar
Kondo M, Scherer DC, Miyamoto T, et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines.Nature. 2000;407:383–386. ArticlePubMedCAS Google Scholar
Lagasse E, Weissman IL. Enforced expression of Bcl-2 in mono-cytes rescues macrophages and partially reverses osteopetrosis in op/op mice.Cell. 1997;89:1021–1031. ArticlePubMedCAS Google Scholar
Landschulz WH, Johnson PF, McKnight SL. The DNA binding domain of the rat liver protein C/EBP is bipartite.Science. 1989; 246:1681–1688. Article Google Scholar
Friedman AD, Landschulz WH, McKnight SL. CCAAT/enhancer binding protein activates the promoter of the serum albumin gene in cultured hepatoma cells.Genes Dev. 1989;3:1314–1322. ArticlePubMedCAS Google Scholar
Friedman AD, McKnight SL. Identification of two polypeptide segments of CCAAT/enhancer-binding protein required for transcriptional activation of the serum albumin gene.Genes Dev. 1990;4: 1416–1426. ArticlePubMedCAS Google Scholar
Calkhoven CF, Muller C, Leutz A. Translational control of C/ EBPalpha and C/EBPbeta isoform expression.Genes Dev. 2000; 14:1920–1932. PubMedPubMed CentralCAS Google Scholar
Williamson E, Xu HN, Gombart AF, et al. Identification of transcriptional activation and repression domains in human CCAAT/enhancer-binding protein epsilon.J Biol Chem. 1998;273: 14796–14808. ArticlePubMedCAS Google Scholar
Habener JF, Ron D. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factor C/EBP and LAP functions as a dominant-negative inhibitor of gene transcription.Genes Dev. 1992;6:439–453. ArticlePubMed Google Scholar
Cooper C, Henderson A, Artandi S, Avitahl N, Calame K. Ig/EBP (C/EBP gamma) is a transdominant negative inhibitor of C/EBP family transcriptional activators.Nucl Acids Res. 1995;23: 4371–4377. ArticlePubMedPubMed CentralCAS Google Scholar
Scott LM, Civin CI, Rorth P, Friedman AD. A novel temporal pattern of three C/EBP family members in differentiating myelomonocytic cells.Blood. 1992;80:1725–1735. PubMedCAS Google Scholar
Muller C, Kowenz-Leutz E, Grieser-Ada S, Graf T, Leutz A. NF-M (chicken C/EBPβ) induces eosinophilic differentiation and apoptosis in a hematopoietic progenitor cell line.EMBO J. 1995;14: 6127–6135. ArticlePubMedPubMed CentralCAS Google Scholar
Radomska HS, Huettner CS, Zhang P, Tenen DG. C/EBPα is a regulatory switch sufficient for induction of granulocytic differentiation from bipotential myeloid cells.Mol Cell Biol. 1998;18: 4301–4314. ArticlePubMedPubMed CentralCAS Google Scholar
Hohaus S, Petrovick MS, Voso MT, Sun Z, Zhang DE, Tenen DG. PU.1 and C/EBPα regulate expression of the granulocyte-macrophage colony-stimulating factor receptor α gene.Mol Cell Biol. 1995;15:5830–5845. ArticlePubMedPubMed CentralCAS Google Scholar
Antonson P, Stellan B, Yamanaka R, Xanthopoulos KG. A novel human CCAAT/enhancer binding protein gene, C/EBP epsilon, is expressed in cells of lymphoid and myeloid lineages and is localized on chromosome 14q11.2 close to the T cell receptor alpha/ delta locus.Genomics. 1996;35:30–38. ArticlePubMedCAS Google Scholar
Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG. Absence of G-CSF signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice.Proc Natl Acad Sci U S A. 1997;94:569–574. ArticlePubMedPubMed CentralCAS Google Scholar
Zhang P, Iwama A, Datta MW, Darlington GJ, Link DC, Tenen DG. Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein α (C/EBPα) is critical for granulopoiesis.J Exp Med. 1998; 188:1173–1184. ArticlePubMedPubMed CentralCAS Google Scholar
Screpanti I, Romani L, Musiani P, et al. Lymphoproliferative disorder and imbalanced T-helper response in C/EBPβ-deficient mice.EMBO J. 1995;14:1932–1941. ArticlePubMedPubMed CentralCAS Google Scholar
Tanaka T, Akira S, Yoshida M, et al. Targeted disruption of the NF- IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages.Cell. 1995;80:353–361. ArticlePubMedCAS Google Scholar
Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene.EMBO J. 1997;16:7432–7443. ArticlePubMedPubMed CentralCAS Google Scholar
Yamanaka R, Barlow C, Lekstrom-Himes J, et al. Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice.Proc Natl Acad Sci U S A. 1997;94:13187–13192. ArticlePubMedPubMed CentralCAS Google Scholar
Chumakov AM, Grillier I, Chumakova E, Chih D, Slater J, Koeffler HP. Cloning of the novel human myeloid-cell-specific C/EBP-epsilon transcription factor.Mol Cell Biol. 1997;17:1375–1386. ArticlePubMedPubMed CentralCAS Google Scholar
Lekstrom-Himes JA, Dorman SE, Kopar P, Holland SM, Gallin JI. Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon.J Exp Med. 1999;189: 1847–1852. ArticlePubMedPubMed CentralCAS Google Scholar
Wang X, Scott E, Sawyers CL, Friedman AD. C/EBPα bypasses G-CSF signals to rapidly induce PU.1 gene expression, stimulate granulocytic differentiation, and limit proliferation in 32D cl3 myeloblasts.Blood. 1999;94:560–571. PubMedCAS Google Scholar
Wang QF, Friedman AD. C/EBPs are required for granulopoiesis independent of their induction of the granulocyte-colony stimulating factor.Blood. 2002. In press.
Park DJ, Chumakov A, Vuong P, et al. CCAAT/enhancer binding protein epsilon is a potential retinoid target gene in acute promyelocytic leukemia treatment.J Clin Invest. 1999;103:1399–1408. ArticlePubMedPubMed CentralCAS Google Scholar
Friedman AD, Wang QF. C/EBP activity is necessary for granulopoiesis and proliferation in the presence of exogenous G-CSF receptor [abstract].Blood. 2000;96:669a. Google Scholar
Chen SS, Chen JF, Johnson PF, Muppala V, Lee YH. C/EBPbeta, when expressed from the C/ebpalpha gene locus, can functionally replace C/EBPalpha in liver but not in adipose tissue.Mol Cell Biol. 2000;20:7292–7299. ArticlePubMedPubMed CentralCAS Google Scholar
Umek RH, Friedman AD, McKnight SL. CCAAT/Enhancer bind- ing protein: a component of a differentiation switch.Science. 1991; 25:288–292. Article Google Scholar
Timchenko NA, Wilde M, Darlington GJ. C/EBPα regulates formation of S-phase-specific E2F-p107 complexes in livers of newborn mice.Mol Cell Biol. 1999;19:2936–2945. ArticlePubMedPubMed CentralCAS Google Scholar
Slomiany BA, D’Arigo KL, Kelly MM, Kurtz DT. C/EBPalpha inhibits cell growth via direct repression of E2F-DP-mediated transcription.Mol Cell Biol. 2000;20:5986–5997. ArticlePubMedPubMed CentralCAS Google Scholar
Johansen LM, Iwama A, Lodie TA, et al. c-Myc is a critical target for C/EBP alpha in granulopoiesis.Mol Cell Biol. 2001;21: 3789–3806. ArticlePubMedPubMed CentralCAS Google Scholar
Bies J, Mukhopadhyaya R, Pierce J, Wolff L. Only late, nonmitotic stages of granulocyte differentiation in 32Dcl3 cells are blocked by ectopic expression of murine c-myb and its truncated forms.Cell Growth Differ. 1995;6:59–68. PubMedCAS Google Scholar
Lou J, Cao W, Bernardin F, Ayyanathan K, Rauscher III FJ, Friedman AD. Exogenous cdk4 overcomes reduced cdk4 RNA and inhibition of G1 progression in hematopoietic cells expressing a dominant-negative CBF—a model for overcoming inhibition of proliferation by CBF oncoproteins.Oncogene. 2000;19:2695–2703. ArticlePubMedCAS Google Scholar
Liu M, Lee MH, Cohen M, Bommakanti M, Freedman LP. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937.Genes Dev. 1996;10:142–153. ArticlePubMedCAS Google Scholar
Klemsz MJ, McKercher SR, Celada A, Van Beveran C, Maki RA. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene.Cell. 1990;61:113–124. ArticlePubMedCAS Google Scholar
Chen HM, Zhang P, Voso MT, et al. Neutrophils and monocytes express high levels of PU.1 (Spi-1) but not Spi-B.Blood. 1995;85: 2918–2928. PubMedCAS Google Scholar
Cheng T, Shen H, Giokas D, Gere J, Tenen DG, Scadden DT. Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells.Proc Natl Acad Sci U S A. 1996;93:13158–13163. ArticlePubMedPubMed CentralCAS Google Scholar
Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages.Science. 1994;265:1573–1577. ArticlePubMedCAS Google Scholar
McKercher SR,Torbett BE, Anderson KL, et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities.EMBO J. 1996;15:5647–5658. ArticlePubMedPubMed CentralCAS Google Scholar
DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1.Science. 2000; 288:1439–1441. ArticlePubMedCAS Google Scholar
Anderson KL, Smith KA, Perkin H, et al. Neutrophils deficient in PU.1 do not terminally differentiate or become functionally competent.Blood. 1999;94:2310–2318. PubMedCAS Google Scholar
Henkel GW, McKercher SR, Leenen PJ, Maki R. Commitment to the monocytic lineage occurs in the absence of the transcription factor PU.1.Blood. 1999;93:2849–2858. PubMedCAS Google Scholar
Eisenbeis CF, Singh H, Storb U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator.Genes Dev. 1995;9:1377–1387. ArticlePubMedCAS Google Scholar
Meraro D, Hashmueli S, Koren B, et al. Protein-protein and DNA-protein interactions affect the activity of lymphoid-specific IFN regulatory factors.J Immunol. 1999;163:6468–6478. PubMedCAS Google Scholar
Marecki S, Riendeau CJ, Liang MD, Fenton MJ. PU.1 and multiple IFN regulatory factor proteins synergize to mediate transcriptional activation of the human IL-1 beta gene.J Immunol. 2001;166: 6829–6838. ArticlePubMedCAS Google Scholar
Holtschke T, Lohler J, Kanno Y, et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene.Cell. 1996;87:307–317. ArticleCASPubMed Google Scholar
Tamura T, Nagamura-Inoue T, Shmeltzer Z, Kuwata T, Ozato K. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages.Immunity. 2000;13:155–165. ArticlePubMedCAS Google Scholar
Lord KA, Abdollahi A, Hoffman-Liebermann B, Liebermann DA. Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation.Mol Cell Biol. 1993; 13:841–851. ArticlePubMedPubMed CentralCAS Google Scholar
Szabo E, Preis LH, Birrer MJ. Constitutive c-jun expression induces partial macrophage differentiation in U937 cells.Cell Growth Differ. 1994;5:439–446. PubMedCAS Google Scholar
Li AC, Guidez FRB, Collier JG, Glass CK. The macrosialin promoter directs high levels of transcriptional activity in macrophages dependent on combinatorial interactions between PU.1 and c-Jun.J Biol Chem. 1998;273:5389–5399. ArticlePubMedCAS Google Scholar
van Dam H, Duyndam M, Rottier R, et al. Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein.EMBO J. 1993;12:479–487. ArticlePubMedPubMed Central Google Scholar
de Groot R, Auwerx J, Karperien M, Staels B, Kruijer W. Activation of junB by PKC and PKA signal transduction through a novel cis-acting element.Nucl Acids Res. 1991;19:775–781. ArticlePubMedPubMed Central Google Scholar
Arias J, Alberts AS, Brindle P, et al. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor.Nature. 1994;370:226–229. ArticlePubMedCAS Google Scholar
Passegue E, Jochum W, Schorpp-Kistner M, Mohle-Steinlein U, Wagner EF. Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage.Cell. 2001;104:21–32. ArticlePubMedCAS Google Scholar
Rekhtman N, Radparvar F, Evans T, Skoultchi AI. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells.Genes Dev. 1999;13: 1398–1411. ArticlePubMedPubMed CentralCAS Google Scholar
Zhang P, Zhang X, Iwama A, et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding.Blood. 2000;96:2641–2648. PubMedCAS Google Scholar
Querfurth E, Schuster M, Kulessa H, et al. Antagonism between C/ EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors.Genes Dev. 2000;14:2515–2525. ArticlePubMedPubMed CentralCAS Google Scholar
Bae SC, Yamaguchi-Iwai Y, Ogawa E, et al. Isolation of PEBP2αB cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1.Oncogene. 1993;8:809–814. PubMedCAS Google Scholar
Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, Speck NA. Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor.Mol Cell Biol. 1993;13:3324–3339. ArticlePubMedPubMed CentralCAS Google Scholar
Ogawa E, Maruyama M, Kagoshima H, et al. PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene.Proc Natl Acad Sci U S A. 1993;90:6859–6863. ArticlePubMedPubMed CentralCAS Google Scholar
Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L, Groner Y. The human members of the runt domain gene-family. AML1,2 and 3.Genomics. 1994;23:425–432. ArticlePubMedCAS Google Scholar
Meyers S, Downing JR, Hiebert SW. Identification of AML1 and the (8;21) translocation protein AML1-ETO as sequence specific DNA binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions.Mol Cell Biol. 1993;13:6336–6345. ArticlePubMedPubMed CentralCAS Google Scholar
Ogawa E, Inuzuka M, Maruyamna M, et al. Molecular cloning and characterization of PEBP2β, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2α.Virology. 1993;194:314–331. ArticlePubMedCAS Google Scholar
Satake M, Inuzuka M, Shigesada K, Oikawa T, Ito Y. Differential expression of subspecies of polyomavirus and murine leukemia virus enhancer core binding protein, PEBP2, in various hematopoietic cells.Jpn J Cancer Res. 1992;83:714–722. ArticlePubMedPubMed CentralCAS Google Scholar
Erickson P, Dessev G, Lasher RS, Philips G, Robinson M, Drabkin H. ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease.Blood. 1996;88:1813–1823. PubMedCAS Google Scholar
Corsetti MT, Calabi F. Ig/EBP (C/EBP gamma) is a transdominant negative inhibitor of C/EBP family transcriptional activators.Blood. 1997;89:2359–2368. PubMedCAS Google Scholar
Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation.Cell. 1997; 89:747–754. ArticlePubMedCAS Google Scholar
Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML-1, the target of multiple chromosomal translocations in human leukemia, is essential for normal murine fetal hemato-poiesis.Cell. 1996;84:321–330. ArticlePubMedCAS Google Scholar
Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hemato-poiesis.Proc Natl Acad Sci U S A. 1996;93:3444–3449. ArticlePubMedPubMed CentralCAS Google Scholar
Wang Q, Stacy T, Miller JD, et al. The CBFβ subunit is essential for CBFα2 (AML1) function in vivo.Cell. 1996;87:697–708. ArticlePubMedCAS Google Scholar
Sasaki K, Yagi H, Bronson RT, et al. Absence of fetal liver hemato-poiesis in mice deficient in transcriptional coactivator core binding factor β.Proc Natl Acad Sci U S A. 1996;93:12359–12363. ArticlePubMedPubMed CentralCAS Google Scholar
Niki M, Okada H, Takano H, et al. Hematopoiesis in the fetal liver is impaired by the targeted mutagenesis of the gene encoding a non-DNA binding subunit of the transcription factor, PEBP2/CBF.Proc Natl Acad Sci U S A. 1997;94:5697–5702. ArticlePubMedPubMed CentralCAS Google Scholar
Cao W, Britos-Bray M, Claxton DF, et al. CBFβ-SMMHC, expressed in M4eo AML, reduced CBF DNA-binding and inhibited the G1 to S cell cycle transition at the restriction point in myeloid and lymphoid cells.Oncogene. 1997;15:1315–1327. ArticlePubMedCAS Google Scholar
Cao W, Adya N., Britos-Bray M, Liu PP, Friedman AD. The Core Binding Factor α interaction domain and the smooth muscle myosin heavy chain segment of CBFβ-SMMHC are both required to slow cell proliferation.J Biol Chem. 1998;273:31534–31540. ArticlePubMedCAS Google Scholar
Strom DK, Nip J, Westendorf JJ, et al. Expression of the AML-1 oncogene shortens the G(1) phase of the cell cycle.J Biol Chem. 2000;275:3438–3445. ArticlePubMedCAS Google Scholar
Weston K, Bishop MJ. Transcriptional activation by the v-myb oncogene and its cellular progenitor, c-myb.Cell. 1989;58:85–93. ArticlePubMedCAS Google Scholar
Dash AB, Orrico FC, Ness SA. The EVES motif mediates both intermolecular and intramolecular regulation of c-myb.Genes Dev. 1999;10:1858–1869. Article Google Scholar
Mucenski ML, McClain K, Kier AB, et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis.Cell. 1991;65:677–689. ArticlePubMedCAS Google Scholar
Trauth K, Mutschler B, Jenkins NA, Gilbert DJ, Copeland NG, Klempnauer KH. Mouse A-myb encodes a transactivator and is expressed in mitotically active cells of the developing CNS, adult tests and B-lymphocytes.EMBO J. 1994;13:5994–6005. ArticlePubMedPubMed CentralCAS Google Scholar
Golay J, Capucci A, Arsura M, Castellano M, Rizzo V, Introna M. Expression of c-myb and B-myb, but not A-myb, correlates with proliferation in human hematopoietic cells.Blood. 1991;77: 149–158. PubMedCAS Google Scholar
Reiss K, Travali S, Calabretta B, Baserga R. Growth regulated expression of B-myb in fibroblasts and hematopoietic cells.J Cell Physiol. 1991;148:338–343. ArticlePubMedCAS Google Scholar
Kataoka K, Fujiwara KT, Noda M, Nishizawa M. MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun.Mol Cell Biol. 1994;14:7581–7591. ArticlePubMedPubMed CentralCAS Google Scholar
Kataoka K, Noda M, Nishizawa M. Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun.Mol Cell Biol. 1994;14:700–712. ArticlePubMedPubMed CentralCAS Google Scholar
Kerppola TK, Curran T. Maf and Nrl can bind to AP-1 sites and form heterodimers with Fos and Jun.Oncogene. 1994;9:675–684. PubMedCAS Google Scholar
Kataoka K, Noda M, Nishizawa M. Transactivation activity of Maf nuclear oncoprotein is modulated by Jun, Fos and small Maf proteins.Oncogene. 1996;12:53–62. PubMedCAS Google Scholar
Sieweke MH, Tekotte H, Frampton J, Graf T. Expression of a proto-oncogene (proto-myb) in hemopoietic tissues of mice.Cell. 1996;85:49–60. ArticlePubMedCAS Google Scholar
Hegde SP, Zhao J, Ashmun RA, Shapiro LH. c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors.Blood. 1999;94:1578–1589. CASPubMed Google Scholar
Hegde SP, Kumar A, Kurschner C, Shapiro LH. c-maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation.Mol Cell Biol. 1998;18:2729–2737. ArticlePubMed CentralCAS Google Scholar
Nguyen HQ, Hoffman-Liebermann B, Liebermann DA. The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage.Cell. 1993;72: 197–209. ArticlePubMedCAS Google Scholar
Krishnaraju K, Nguyen HQ, Liebermann DA, Hoffman B. The zinc finger transcription factor Egr-1 potentiates macrophage differentiation of hematopoietic cells.Mol Cell Biol. 1995;15: 5499–5507. ArticlePubMedPubMed CentralCAS Google Scholar
Krishnaraju K, Hoffman B, Liebermann DA. The zinc finger transcription factor Egr-1 activates macrophage differentiation in M1 myeloblastic leukemia cells.Blood. 1998;92:1957–1966. PubMedCAS Google Scholar
Krishnaraju K, Hoffman B, Liebermann DA. Early growth response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages.Blood. 2001;97:1298–1305. ArticlePubMedCAS Google Scholar
Lee SL, Wang Y, Milbrandt J. Unimpaired macrophage differentiation and activation in mice lacking the zinc finger transplantation factor NGFI-A (EGR1).Mol Cell Biol. 1996;16: 4566–4572. ArticlePubMedPubMed CentralCAS Google Scholar
Rauscher FJ, Morris JF, Tournary OE, Cook DM, Curran T. Binding of the Wilms tumor locus zinc finger protein to the EGR-1 consensus sequence.Science. 1990;250:1259–1262. ArticlePubMedCAS Google Scholar
Smith SI, Weil D, Johnson GR, Boyd AW, Li CL. Expression of the Wilms’ tumor suppressor gene, WT1, is upregulated by leukemia inhibitory factor and induces monocytic differentiation in M1 leukemic cells.Blood. 1998;91:764–773. PubMedCAS Google Scholar
Inoue K, Tamaki H, Ogawa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia.Blood. 1998;91:2969–2976. PubMedCAS Google Scholar
Loeb DM, Friedman AD, Sukumar SV. A WT1 isoform potentiates G-CSF-mediated granulocytic differentiation and downregulates cyclin E [abstract].Blood. 2000;96:284a. Google Scholar
de The H, Marchio A, Tiollais P, Dejean A. Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes.EMBO J. 1989;8:429–433. ArticlePubMedPubMed Central Google Scholar
Tsai S, Collins SJ. A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage.Proc Natl Acad Sci U S A. 1993;90:7153–7157. ArticlePubMedPubMed CentralCAS Google Scholar
Labrecque J, Allan D, Chambon P, Iscove NN, Lohnes D, Hoang T. Impaired granulocytic differentiation in vitro in hematopoietic cells lacking retinoic acid receptors alpha1 and gamma.Blood. 1998;92:607–615. PubMedCAS Google Scholar
Barberis A, Superti-Furga G, Busslinger M. Mutually exclusive interaction of the CCAAT-binding factor and of a displacement protein with overlapping sequences of a histone gene promoter.Cell. 1987;50:347–359. ArticlePubMedCAS Google Scholar
Luo W, Skalnik DG. CCAAT displacement protein competes with multiple transcriptional activators for binding to four sites in the proximal gp91-phox promoter.J Biol Chem. 1996;271:18203–18210. ArticlePubMedCAS Google Scholar
Skalnik DG, Strauss EC, Orkin SH. CCAAT-displacement protein as a repressor of the myelomonocytic-specific gp91-phox promoter.J Biol Chem. 1991;266:16736–16744. PubMedCAS Google Scholar
Lawson ND, Khanna-Gupta A, Berliner N. Isolation and characterization of the cDNA for mouse neutrophil collagenase: demonstration of shared negative regulatory pathways for neutrophil secondary granule protein gene expression.Blood. 1998:91:2517–2524. PubMedCAS Google Scholar
Khanna-Gupta A, Zibello T, Sun H, Lekstrom-Himes J, Berliner N. C/EBPε mediates myeloid differentiation and is regulated by CCAAT displacement protein (CDP/cut).Proc Natl Acad Sci U S A. 2001;98:8000–8005. ArticlePubMedPubMed CentralCAS Google Scholar