Axonal mRNA localization and translation: local events with broad roles (original) (raw)

References

  1. Holt CE, Martin KC, Schuman EM (2019) Local translation in neurons: visualization and function. Nat Struct Mol Biol 26(7):557–566
    CAS PubMed Google Scholar
  2. Holt CE, Bullock SL (2009) Subcellular mRNA localization in animal cells and why it matters. Science 326(5957):1212–1216
    CAS PubMed PubMed Central Google Scholar
  3. Bassell GJ, Zhang H, Byrd AL, Femino AM, Singer RH, Taneja KL, Lifshitz LM, Herman IM, Kosik KS (1998) Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J Neurosci 18(1):251–265
    CAS PubMed PubMed Central Google Scholar
  4. Olink-Coux M, Hollenbeck PJ (1996) Localization and active transport of mRNA in axons of sympathetic neurons in culture. J Neurosci 16(4):1346–1358
    CAS PubMed PubMed Central Google Scholar
  5. Poulopoulos A, Murphy AJ, Ozkan A, Davis P, Hatch J, Kirchner R, Macklis JD (2019) Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature 565(7739):356–360
    CAS PubMed PubMed Central Google Scholar
  6. Gumy LF, Yeo GS, Tung YC, Zivraj KH, Willis D, Coppola G, Lam BY, Twiss JL, Holt CE, Fawcett JW (2011) Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17(1):85–98
    CAS PubMed PubMed Central Google Scholar
  7. Minis A, Dahary D, Manor O, Leshkowitz D, Pilpel Y, Yaron A (2014) Subcellular transcriptomics-dissection of the mRNA composition in the axonal compartment of sensory neurons. Dev Neurobiol 74(3):365–381
    CAS PubMed Google Scholar
  8. Willis DE, van Niekerk EA, Sasaki Y, Mesngon M, Merianda TT, Williams GG, Kendall M, Smith DS, Bassell GJ, Twiss JL (2007) Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J Cell Biol 178(6):965–980
    CAS PubMed PubMed Central Google Scholar
  9. Zivraj KH, Tung YC, Piper M, Gumy L, Fawcett JW, Yeo GS, Holt CE (2010) Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J Neurosci 30(46):15464–15478
    CAS PubMed PubMed Central Google Scholar
  10. Taylor AM, Berchtold NC, Perreau VM, Tu CH, Li Jeon N, Cotman CW (2009) Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci 29(15):4697–4707
    CAS PubMed PubMed Central Google Scholar
  11. Dalla Costa I, Buchanan CN, Zdradzinski MD, Sahoo PK, Smith TP, Thames E, Kar AN, Twiss JL (2021) The functional organization of axonal mRNA transport and translation. Nat Rev Neurosci 22(2):77–91
    CAS PubMed Google Scholar
  12. Sahoo PK, Smith DS, Perrone-Bizzozero N, Twiss JL (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131(8):jcs196808
    PubMed PubMed Central Google Scholar
  13. Andreassi C, Luisier R, Crerar H, Darsinou M, Blokzijl-Franke S, Lenn T, Luscombe NM, Cuda G, Gaspari M, Saiardi A, Riccio A (2021) Cytoplasmic cleavage of IMPA1 3′ UTR is necessary for maintaining axon integrity. Cell Rep 34(8):108778
    CAS PubMed PubMed Central Google Scholar
  14. Ben-Tov Perry R, Doron-Mandel E, Iavnilovitch E, Rishal I, Dagan SY, Tsoory M, Coppola G, McDonald MK, Gomes C, Geschwind DH, Twiss JL, Yaron A, Fainzilber M (2012) Subcellular knockout of importin beta1 perturbs axonal retrograde signaling. Neuron 75(2):294–305
    Google Scholar
  15. Ciolli Mattioli C, Rom A, Franke V, Imami K, Arrey G, Terne M, Woehler A, Akalin A, Ulitsky I, Chekulaeva M (2019) Alternative 3′ UTRs direct localization of functionally diverse protein isoforms in neuronal compartments. Nucleic Acids Res 47(5):2560–2573
    PubMed Google Scholar
  16. Meer EJ, Wang DO, Kim S, Barr I, Guo F, Martin KC (2012) Identification of a _cis_-acting element that localizes mRNA to synapses. Proc Natl Acad Sci USA 109(12):4639–4644
    CAS PubMed PubMed Central Google Scholar
  17. Merianda TT, Gomes C, Yoo S, Vuppalanchi D, Twiss JL (2013) Axonal localization of neuritin/CPG15 mRNA in neuronal populations through distinct 5′ and 3′ UTR elements. J Neurosci 33(34):13735–13742
    CAS PubMed PubMed Central Google Scholar
  18. Tushev G, Glock C, Heumüller M, Biever A, Jovanovic M, Schuman EM (2018) Alternative 3′ UTRs modify the localization, regulatory potential, stability, and plasticity of mRNAs in neuronal compartments. Neuron 98(3):495-511.e6
    CAS PubMed Google Scholar
  19. Yoo S, Kim HH, Kim P, Donnelly CJ, Kalinski AL, Vuppalanchi D, Park M, Lee SJ, Merianda TT, Perrone-Bizzozero NI, Twiss JL (2013) A HuD-ZBP1 ribonucleoprotein complex localizes GAP-43 mRNA into axons through its 3′ untranslated region AU-rich regulatory element. J Neurochem 126(6):792–804
    CAS PubMed PubMed Central Google Scholar
  20. Zhang HL, Eom T, Oleynikov Y, Shenoy SM, Liebelt DA, Dictenberg JB, Singer RH, Bassell GJ (2001) Neurotrophin-induced transport of a beta-actin mRNP complex increases beta-actin levels and stimulates growth cone motility. Neuron 31(2):261–275
    CAS PubMed Google Scholar
  21. Otsuka H, Fukao A, Funakami Y, Duncan KE, Fujiwara T (2019) Emerging evidence of translational control by AU-rich element-binding proteins. Front Genet 10:332
    CAS PubMed PubMed Central Google Scholar
  22. Perry RB, Rishal I, Doron-Mandel E, Kalinski AL, Medzihradszky KF, Terenzio M, Alber S, Koley S, Lin A, Rozenbaum M, Yudin D, Sahoo PK, Gomes C, Shinder V, Geraisy W, Huebner EA, Woolf CJ, Yaron A, Burlingame AL, Twiss JL, Fainzilber M (2016) Nucleolin-mediated RNA localization regulates neuron growth and cycling cell size. Cell Rep 16(6):1664–1676
    CAS PubMed PubMed Central Google Scholar
  23. Nicastro G, Candel AM, Uhl M, Oregioni A, Hollingworth D, Backofen R, Martin SR, Ramos A (2017) Mechanism of β-actin mRNA recognition by ZBP1. Cell Rep 18(5):1187–1199
    CAS PubMed PubMed Central Google Scholar
  24. Nagano S, Jinno J, Abdelhamid RF, Jin Y, Shibata M, Watanabe S, Hirokawa S, Nishizawa M, Sakimura K, Onodera O, Okada H, Okada T, Saito Y, Takahashi-Fujigasaki J, Murayama S, Wakatsuki S, Mochizuki H, Araki T (2020) TDP-43 transports ribosomal protein mRNA to regulate axonal local translation in neuronal axons. Acta Neuropathol 140(5):695–713
    CAS PubMed Google Scholar
  25. Smith TP, Sahoo PK, Kar AN, Twiss JL (2020) Intra-axonal mechanisms driving axon regeneration. Brain Res 1740:146864
    CAS PubMed PubMed Central Google Scholar
  26. Martínez JC, Randolph LK, Iascone DM, Pernice HF, Polleux F, Hengst U (2019) Pum2 shapes the transcriptome in developing axons through retention of target mRNAs in the cell body. Neuron 104(5):931-946.e5
    PubMed PubMed Central Google Scholar
  27. Krichevsky AM, Kosik KS (2001) Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32(4):683–696
    CAS PubMed Google Scholar
  28. Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43(4):513–525
    CAS PubMed Google Scholar
  29. Turner-Bridger B, Jakobs M, Muresan L, Wong HH, Franze K, Harris WA, Holt CE (2018) Single-molecule analysis of endogenous β-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons. Proc Natl Acad Sci USA 115(41):E9697–E9706
    CAS PubMed PubMed Central Google Scholar
  30. Fernandopulle MS, Lippincott-Schwartz J, Ward ME (2021) RNA transport and local translation in neurodevelopmental and neurodegenerative disease. Nat Neurosci 24(5):622–632
    CAS PubMed Google Scholar
  31. Gumy LF, Katrukha EA, Kapitein LC, Hoogenraad CC (2014) New insights into mRNA trafficking in axons. Dev Neurobiol 74(3):233–244
    CAS PubMed Google Scholar
  32. Baumann S, Komissarov A, Gili M, Ruprecht V, Wieser S, Maurer SP (2020) A reconstituted mammalian APC-kinesin complex selectively transports defined packages of axonal mRNAs. Sci Adv 6(11):eaaz1588
    CAS PubMed PubMed Central Google Scholar
  33. Hanz S, Perlson E, Willis D, Zheng JQ, Massarwa R, Huerta JJ, Koltzenburg M, Kohler M, van Minnen J, Twiss JL, Fainzilber M (2003) Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40(6):1095–1104
    CAS PubMed Google Scholar
  34. Ji SJ, Jaffrey SR (2012) Intra-axonal translation of SMAD1/5/8 mediates retrograde regulation of trigeminal ganglia subtype specification. Neuron 74(1):95–107
    CAS PubMed PubMed Central Google Scholar
  35. Nalavadi VC, Griffin LE, Picard-Fraser P, Swanson AM, Takumi T, Bassell GJ (2012) Regulation of zipcode binding protein 1 transport dynamics in axons by myosin Va. J Neurosci 32(43):15133–15141
    CAS PubMed PubMed Central Google Scholar
  36. Das S, Singer RH, Yoon YJ (2019) The travels of mRNAs in neurons: do they know where they are going? Curr Opin Neurobiol 57:110–116
    CAS PubMed PubMed Central Google Scholar
  37. Fukuda Y, Pazyra-Murphy MF, Silagi ES, Tasdemir-Yilmaz OE, Li Y, Rose L, Yeoh ZC, Vangos NE, Geffken EA, Seo HS, Adelmant G, Bird GH, Walensky LD, Marto JA, Dhe-Paganon S, Segal RA (2021) Binding and transport of SFPQ-RNA granules by KIF5A/KLC1 motors promotes axon survival. J Cell Biol. https://doi.org/10.1083/jcb.202005051
    Article PubMed Google Scholar
  38. Cioni JM, Lin JQ, Holtermann AV, Koppers M, Jakobs MAH, Azizi A, Turner-Bridger B, Shigeoka T, Franze K, Harris WA, Holt CE (2019) Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176(1–2):56-72.e15
    CAS PubMed PubMed Central Google Scholar
  39. Liao YC, Fernandopulle MS, Wang G, Choi H, Hao L, Drerup CM, Patel R, Qamar S, Nixon-Abell J, Shen Y, Meadows W, Vendruscolo M, Knowles TPJ, Nelson M, Czekalska MA, Musteikyte G, Gachechiladze MA, Stephens CA, Pasolli HA, Forrest LR, St George-Hyslop P, Lippincott-Schwartz J, Ward ME (2019) RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell 179(1):147-164.e20
    CAS PubMed PubMed Central Google Scholar
  40. Maday S, Twelvetrees AE, Moughamian AJ, Holzbaur EL (2014) Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84(2):292–309
    CAS PubMed PubMed Central Google Scholar
  41. Zala D, Hinckelmann MV, Yu H, Lyra da Cunha MM, Liot G, Cordelières FP, Marco S, Saudou F (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152(3):479–491
    CAS PubMed Google Scholar
  42. Koppers M, Cagnetta R, Shigeoka T, Wunderlich LC, Vallejo-Ramirez P, Qiaojin Lin J, Zhao S, Jakobs MA, Dwivedy A, Minett MS, Bellon A, Kaminski CF, Harris WA, Flanagan JG, Holt CE (2019) Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons. Elife 8:e48718
    PubMed PubMed Central Google Scholar
  43. Tcherkezian J, Brittis PA, Thomas F, Roux PP, Flanagan JG (2010) Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell 141(4):632–644
    CAS PubMed PubMed Central Google Scholar
  44. Sasaki Y, Welshhans K, Wen Z, Yao J, Xu M, Goshima Y, Zheng JQ, Bassell GJ (2010) Phosphorylation of zipcode binding protein 1 is required for brain-derived neurotrophic factor signaling of local beta-actin synthesis and growth cone turning. J Neurosci 30(28):9349–9358
    CAS PubMed PubMed Central Google Scholar
  45. Tsai NP, Bi J, Wei LN (2007) The adaptor Grb7 links netrin-1 signaling to regulation of mRNA translation. EMBO J 26(6):1522–1531
    CAS PubMed PubMed Central Google Scholar
  46. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293
    CAS PubMed PubMed Central Google Scholar
  47. Hörnberg H, Holt C (2013) RNA-binding proteins and translational regulation in axons and growth cones. Front Neurosci 7:81
    PubMed PubMed Central Google Scholar
  48. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745
    CAS PubMed PubMed Central Google Scholar
  49. Hengst U, Deglincerti A, Kim HJ, Jeon NL, Jaffrey SR (2009) Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat Cell Biol 11(8):1024–1030
    CAS PubMed PubMed Central Google Scholar
  50. Gracias NG, Shirkey-Son NJ, Hengst U (2014) Local translation of TC10 is required for membrane expansion during axon outgrowth. Nat Commun 5:3506
    PubMed Google Scholar
  51. Terenzio M, Koley S, Samra N, Rishal I, Zhao Q, Sahoo PK, Urisman A, Marvaldi L, Oses-Prieto JA, Forester C, Gomes C, Kalinski AL, Di Pizio A, Doron-Mandel E, Perry RB, Koppel I, Twiss JL, Burlingame AL, Fainzilber M (2018) Locally translated mTOR controls axonal local translation in nerve injury. Science 359(6382):1416–1421
    CAS PubMed PubMed Central Google Scholar
  52. Cioni JM, Koppers M, Holt CE (2018) Molecular control of local translation in axon development and maintenance. Curr Opin Neurobiol 51:86–94
    CAS PubMed Google Scholar
  53. Gardiner AS, Twiss JL, Perrone-Bizzozero NI (2015) Competing interactions of RNA-binding proteins, microRNAs, and their targets control neuronal development and function. Biomolecules 5(4):2903–2918
    CAS PubMed PubMed Central Google Scholar
  54. Smith CL, Afroz R, Bassell GJ, Furneaux HM, Perrone-Bizzozero NI, Burry RW (2004) GAP-43 mRNA in growth cones is associated with HuD and ribosomes. J Neurobiol 61(2):222–235
    CAS PubMed Google Scholar
  55. Bird CW, Gardiner AS, Bolognani F, Tanner DC, Chen CY, Lin WJ, Yoo S, Twiss JL, Perrone-Bizzozero N (2013) KSRP modulation of GAP-43 mRNA stability restricts axonal outgrowth in embryonic hippocampal neurons. PLoS One 8(11):e79255
    PubMed PubMed Central Google Scholar
  56. Anderson KD, Morin MA, Beckel-Mitchener A, Mobarak CD, Neve RL, Furneaux HM, Burry R, Perrone-Bizzozero NI (2000) Overexpression of HuD, but not of its truncated form HuD I+II, promotes GAP-43 gene expression and neurite outgrowth in PC12 cells in the absence of nerve growth factor. J Neurochem 75(3):1103–1114
    CAS PubMed Google Scholar
  57. Akten B, Kye MJ, le Hao T, Wertz MH, Singh S, Nie D, Huang J, Merianda TT, Twiss JL, Beattie CE, Steen JA, Sahin M (2011) Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc Natl Acad Sci USA 108(25):10337–10342
    CAS PubMed PubMed Central Google Scholar
  58. Donnelly CJ, Willis DE, Xu M, Tep C, Jiang C, Yoo S, Schanen NC, Kirn-Safran CB, van Minnen J, English A, Yoon SO, Bassell GJ, Twiss JL (2011) Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity. EMBO J 30(22):4665–4677
    CAS PubMed PubMed Central Google Scholar
  59. Gomes C, Lee SJ, Gardiner AS, Smith T, Sahoo PK, Patel P, Thames E, Rodriguez R, Taylor R, Yoo S, Heise T, Kar AN, Perrone-Bizzozero N, Twiss JL (2017) Axonal localization of neuritin/CPG15 mRNA is limited by competition for HuD binding. J Cell Sci 130(21):3650–3662
    CAS PubMed PubMed Central Google Scholar
  60. Zhang P, Abdelmohsen K, Liu Y, Tominaga-Yamanaka K, Yoon JH, Ioannis G, Martindale JL, Zhang Y, Becker KG, Yang IH, Gorospe M, Mattson MP (2015) Novel RNA- and FMRP-binding protein TRF2-S regulates axonal mRNA transport and presynaptic plasticity. Nat Commun 6:8888
    CAS PubMed Google Scholar
  61. Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J, Park J, Ji SJ (2018) Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res 46(3):1412–1423
    CAS PubMed Google Scholar
  62. Yu J, She Y, Yang L, Zhuang M, Han P, Liu J, Lin X, Wang N, Chen M, Jiang C, Zhang Y, Yuan Y, Ji SJ (2021) The m6A readers YTHDF1 and YTHDF2 synergistically control cerebellar parallel fiber growth by regulating local translation of the key Wnt5a signaling components in axons. Adv Sci. https://doi.org/10.1002/advs.202101329
    Article Google Scholar
  63. Kim E, Jung H (2020) Local mRNA translation in long-term maintenance of axon health and function. Curr Opin Neurobiol 63:15–22
    CAS PubMed Google Scholar
  64. Madugalle SU, Meyer K, Wang DO, Bredy TW (2020) RNA N(6)-methyladenosine and the regulation of RNA localization and function in the brain. Trends Neurosci 43(12):1011–1023
    CAS PubMed Google Scholar
  65. Wang B, Bao L (2017) Axonal microRNAs: localization, function and regulatory mechanism during axon development. J Mol Cell Biol 9(2):82–90
    CAS PubMed PubMed Central Google Scholar
  66. Aschrafi A, Kar AN, Natera-Naranjo O, MacGibeny MA, Gioio AE, Kaplan BB (2012) MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery. Cell Mol Life Sci 69(23):4017–4027
    CAS PubMed Google Scholar
  67. Aschrafi A, Schwechter AD, Mameza MG, Natera-Naranjo O, Gioio AE, Kaplan BB (2008) MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci 28(47):12581–12590
    CAS PubMed PubMed Central Google Scholar
  68. Bellon A, Iyer A, Bridi S, Lee FCY, Ovando-Vázquez C, Corradi E, Longhi S, Roccuzzo M, Strohbuecker S, Naik S, Sarkies P, Miska E, Abreu-Goodger C, Holt CE, Baudet ML (2017) miR-182 regulates Slit2-mediated axon guidance by modulating the local translation of a specific mRNA. Cell Rep 18(5):1171–1186
    CAS PubMed PubMed Central Google Scholar
  69. Wang B, Pan L, Wei M, Wang Q, Liu WW, Wang N, Jiang XY, Zhang X, Bao L (2015) FMRP-mediated axonal delivery of miR-181d regulates axon elongation by locally targeting Map1b and Calm1. Cell Rep 13(12):2794–2807
    CAS PubMed Google Scholar
  70. Lucci C, Mesquita-Ribeiro R, Rathbone A, Dajas-Bailador F (2020) Spatiotemporal regulation of GSK3β levels by miRNA-26a controls axon development in cortical neurons. Development 147(3):dev180232
    CAS PubMed PubMed Central Google Scholar
  71. Hengst U, Jaffrey SR (2007) Function and translational regulation of mRNA in developing axons. Semin Cell Dev Biol 18(2):209–215
    CAS PubMed PubMed Central Google Scholar
  72. Corradi E, Baudet ML (2020) In the right place at the right time: miRNAs as key regulators in developing axons. Int J Mol Sci 21(220):8726
    CAS PubMed Central Google Scholar
  73. Wei M, Huang J, Li GW, Jiang B, Cheng H, Liu X, Jiang X, Zhang X, Yang L, Bao L, Wang B (2021) Axon-enriched lincRNA ALAE is required for axon elongation via regulation of local mRNA translation. Cell Rep 35(5):109053
    CAS PubMed Google Scholar
  74. Jung H, Gkogkas CG, Sonenberg N, Holt CE (2014) Remote control of gene function by local translation. Cell 157(1):26–40
    CAS PubMed PubMed Central Google Scholar
  75. Shigeoka T, Koppers M, Wong HH, Lin JQ, Cagnetta R, Dwivedy A, de FreitasNascimento J, van Tartwijk FW, Ströhl F, Cioni JM, Schaeffer J, Carrington M, Kaminski CF, Jung H, Harris WA, Holt CE (2019) On-site ribosome remodeling by locally synthesized ribosomal proteins in axons. Cell Rep 29(11):3605-3619 e10
    CAS PubMed PubMed Central Google Scholar
  76. Hillefors M, Gioio AE, Mameza MG, Kaplan BB (2007) Axon viability and mitochondrial function are dependent on local protein synthesis in sympathetic neurons. Cell Mol Neurobiol 27(6):701–716
    CAS PubMed Google Scholar
  77. Aschrafi A, Kar AN, Gale JR, Elkahloun AG, Vargas JN, Sales N, Wilson G, Tompkins M, Gioio AE, Kaplan BB (2016) A heterogeneous population of nuclear-encoded mitochondrial mRNAs is present in the axons of primary sympathetic neurons. Mitochondrion 30:18–23
    CAS PubMed PubMed Central Google Scholar
  78. Spillane M, Ketschek A, Merianda TT, Twiss JL, Gallo G (2013) Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep 5(6):1564–1575
    CAS PubMed PubMed Central Google Scholar
  79. Kim S, Coulombe PA (2010) Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat Rev Mol Cell Biol 11(1):75–81
    PubMed Google Scholar
  80. Piper M, Lee AC, van Horck FP, McNeilly H, Lu TB, Harris WA, Holt CE (2015) Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones. Neural Dev 10:3
    PubMed PubMed Central Google Scholar
  81. Preitner N, Quan J, Nowakowski DW, Hancock ML, Shi J, Tcherkezian J, Young-Pearse TL, Flanagan JG (2014) APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly. Cell 158(2):368–382
    CAS PubMed PubMed Central Google Scholar
  82. Vidaki M, Drees F, Saxena T, Lanslots E, Taliaferro MJ, Tatarakis A, Burge CB, Wang ET, Gertler FB (2017) A requirement for Mena, an actin regulator, in local mRNA translation in developing neurons. Neuron 95(3):608-622.e5
    CAS PubMed PubMed Central Google Scholar
  83. Donnelly CJ, Park M, Spillane M, Yoo S, Pacheco A, Gomes C, Vuppalanchi D, McDonald M, Kim HH, Merianda TT, Gallo G, Twiss JL (2013) Axonally synthesized β-actin and GAP-43 proteins support distinct modes of axonal growth. J Neurosci 33(8):3311–3322
    CAS PubMed PubMed Central Google Scholar
  84. Walker BA, Ji SJ, Jaffrey SR (2012) Intra-axonal translation of RhoA promotes axon growth inhibition by CSPG. J Neurosci 32(41):14442–14447
    CAS PubMed PubMed Central Google Scholar
  85. van Kesteren RE, Carter C, Dissel HM, van Minnen J, Gouwenberg Y, Syed NI, Spencer GE, Smit AB (2006) Local synthesis of actin-binding protein beta-thymosin regulates neurite outgrowth. J Neurosci 26(1):152–157
    PubMed PubMed Central Google Scholar
  86. Lee SJ, Zdradzinski MD, Sahoo PK, Kar AN, Patel P, Kawaguchi R, Aguilar BJ, Lantz KD, McCain CR, Coppola G, Lu Q, Twiss JL (2021) Selective axonal translation of prenylated Cdc42 mRNA isoform supports axon growth. J Cell Sci 134:251967
    Google Scholar
  87. Merianda TT, Vuppalanchi D, Yoo S, Blesch A, Twiss JL (2013) Axonal transport of neural membrane protein 35 mRNA increases axon growth. J Cell Sci 126(Pt 1):90–102
    CAS PubMed PubMed Central Google Scholar
  88. Kar AN, MacGibeny MA, Gervasi NM, Gioio AE, Kaplan BB (2013) Intra-axonal synthesis of eukaryotic translation initiation factors regulates local protein synthesis and axon growth in rat sympathetic neurons. J Neurosci 33(17):7165–7174
    CAS PubMed PubMed Central Google Scholar
  89. Di Paolo A, Eastman G, Mesquita-Ribeiro R, Farias J, Macklin A, Kislinger T, Colburn N, Munroe D, Sotelo Sosa JR, Dajas-Bailador F, Sotelo-Silveira JR (2020) PDCD4 regulates axonal growth by translational repression of neurite growth-related genes and is modulated during nerve injury responses. RNA 26(11):1637–1653
    PubMed PubMed Central Google Scholar
  90. Piper M, Anderson R, Dwivedy A, Weinl C, van Horck F, Leung KM, Cogill E, Holt C (2006) Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 49(2):215–228
    CAS PubMed PubMed Central Google Scholar
  91. Leung KM, van Horck FP, Lin AC, Allison R, Standart N, Holt CE (2006) Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat Neurosci 9(10):1247–1256
    CAS PubMed PubMed Central Google Scholar
  92. Wu KY, Hengst U, Cox LJ, Macosko EZ, Jeromin A, Urquhart ER, Jaffrey SR (2005) Local translation of RhoA regulates growth cone collapse. Nature 436(7053):1020–1024
    CAS PubMed PubMed Central Google Scholar
  93. Yao J, Sasaki Y, Wen Z, Bassell GJ, Zheng JQ (2006) An essential role for beta-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat Neurosci 9(10):1265–1273
    CAS PubMed Google Scholar
  94. Leung LC, Urbančič V, Baudet ML, Dwivedy A, Bayley TG, Lee AC, Harris WA, Holt CE (2013) Coupling of NF-protocadherin signaling to axon guidance by cue-induced translation. Nat Neurosci 16(2):166–173
    CAS PubMed PubMed Central Google Scholar
  95. Cagnetta R, Frese CK, Shigeoka T, Krijgsveld J, Holt CE (2018) Rapid cue-specific remodeling of the nascent axonal proteome. Neuron 99(1):29-46.e4
    CAS PubMed PubMed Central Google Scholar
  96. Campbell DS, Holt CE (2001) Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32(6):1013–1026
    CAS PubMed Google Scholar
  97. Shigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J, Lin JQ, Amieux PS, Holt CE (2016) Dynamic axonal translation in developing and mature visual circuits. Cell 166(1):181–192
    CAS PubMed PubMed Central Google Scholar
  98. Brittis PA, Lu Q, Flanagan JG (2002) Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110(2):223–235
    CAS PubMed Google Scholar
  99. Colak D, Ji SJ, Porse BT, Jaffrey SR (2013) Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell 153(6):1252–1265
    CAS PubMed PubMed Central Google Scholar
  100. Lepelletier L, Langlois SD, Kent CB, Welshhans K, Morin S, Bassell GJ, Yam PT, Charron F (2017) Sonic Hedgehog guides axons via zipcode binding protein 1-mediated local translation. J Neurosci 37(7):1685–1695
    CAS PubMed PubMed Central Google Scholar
  101. Welshhans K, Bassell GJ (2011) Netrin-1-induced local beta-actin synthesis and growth cone guidance requires zipcode binding protein 1. J Neurosci 31(27):9800–9813
    CAS PubMed PubMed Central Google Scholar
  102. Preitner N, Quan J, Li X, Nielsen FC, Flanagan JG (2016) IMP2 axonal localization, RNA interactome, and function in the development of axon trajectories. Development 143(15):2753–2759
    CAS PubMed PubMed Central Google Scholar
  103. Kalil K, Dent EW (2014) Branch management: mechanisms of axon branching in the developing vertebrate CNS. Nat Rev Neurosci 15(1):7–18
    CAS PubMed PubMed Central Google Scholar
  104. Wong HH, Lin JQ, Ströhl F, Roque CG, Cioni JM, Cagnetta R, Turner-Bridger B, Laine RF, Harris WA, Kaminski CF, Holt CE (2017) RNA docking and local translation regulate site-specific axon remodeling in vivo. Neuron 95(4):852-868.e8
    CAS PubMed PubMed Central Google Scholar
  105. Spillane M, Ketschek A, Donnelly CJ, Pacheco A, Twiss JL, Gallo G (2012) Nerve growth factor-induced formation of axonal filopodia and collateral branches involves the intra-axonal synthesis of regulators of the actin-nucleating Arp2/3 complex. J Neurosci 32(49):17671–17689
    CAS PubMed PubMed Central Google Scholar
  106. Yoon BC, Jung H, Dwivedy A, O’Hare CM, Zivraj KH, Holt CE (2012) Local translation of extranuclear lamin B promotes axon maintenance. Cell 148(4):752–764
    CAS PubMed PubMed Central Google Scholar
  107. Cosker KE, Pazyra-Murphy MF, Fenstermacher SJ, Segal RA (2013) Target-derived neurotrophins coordinate transcription and transport of bclw to prevent axonal degeneration. J Neurosci 33(12):5195–5207
    CAS PubMed PubMed Central Google Scholar
  108. Pease-Raissi SE, Pazyra-Murphy MF, Li Y, Wachter F, Fukuda Y, Fenstermacher SJ, Barclay LA, Bird GH, Walensky LD, Segal RA (2017) Paclitaxel reduces axonal Bclw to initiate IP(3)R1-dependent axon degeneration. Neuron 96(2):373-386.e6
    CAS PubMed PubMed Central Google Scholar
  109. Lyles V, Zhao Y, Martin KC (2006) Synapse formation and mRNA localization in cultured Aplysia neurons. Neuron 49(3):349–356
    CAS PubMed Google Scholar
  110. Batista AFR, Martínez JC, Hengst U (2017) Intra-axonal synthesis of SNAP25 is required for the formation of presynaptic terminals. Cell Rep 20(13):3085–3098
    CAS PubMed PubMed Central Google Scholar
  111. Taylor AM, Wu J, Tai HC, Schuman EM (2013) Axonal translation of β-catenin regulates synaptic vesicle dynamics. J Neurosci 33(13):5584–5589
    CAS PubMed PubMed Central Google Scholar
  112. Hsiao K, Bozdagi O, Benson DL (2014) Axonal cap-dependent translation regulates presynaptic p35. Dev Neurobiol 74(3):351–364
    CAS PubMed Google Scholar
  113. Yu J, Oentaryo MJ, Lee CW (2021) Local protein synthesis of neuronal MT1-MMP for agrin-induced presynaptic development. Development 148(10):199000
    Google Scholar
  114. Gatto CL, Broadie K (2008) Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure. Development 135(15):2637–2648
    CAS PubMed Google Scholar
  115. Tessier CR, Broadie K (2008) Drosophila fragile X mental retardation protein developmentally regulates activity-dependent axon pruning. Development 135(8):1547–1557
    CAS PubMed Google Scholar
  116. Gatto CL, Broadie K (2009) Temporal requirements of the fragile x mental retardation protein in modulating circadian clock circuit synaptic architecture. Front Neural Circuits 3:8
    PubMed PubMed Central Google Scholar
  117. Christie SB, Akins MR, Schwob JE, Fallon JR (2009) The FXG: a presynaptic fragile X granule expressed in a subset of developing brain circuits. J Neurosci 29(5):1514–1524
    CAS PubMed PubMed Central Google Scholar
  118. Gong LQ, He LJ, Dong ZY, Lu XH, Poo MM, Zhang XH (2011) Postinduction requirement of NMDA receptor activation for late-phase long-term potentiation of developing retinotectal synapses in vivo. J Neurosci 31(9):3328–3335
    CAS PubMed PubMed Central Google Scholar
  119. Younts TJ, Monday HR, Dudok B, Klein ME, Jordan BA, Katona I, Castillo PE (2016) Presynaptic protein synthesis is required for long-term plasticity of GABA release. Neuron 92(2):479–492
    CAS PubMed PubMed Central Google Scholar
  120. Ostroff LE, Santini E, Sears R, Deane Z, Kanadia RN, LeDoux JE, Lhakhang T, Tsirigos A, Heguy A, Klann E (2019) Axon TRAP reveals learning-associated alterations in cortical axonal mRNAs in the lateral amgydala. Elife 8:e51607
    CAS PubMed PubMed Central Google Scholar
  121. Ji SJ, Jaffrey SR (2014) Axonal transcription factors: novel regulators of growth cone-to-nucleus signaling. Dev Neurobiol 74(3):245–258
    CAS PubMed Google Scholar
  122. Li S, Yang L, Selzer ME, Hu Y (2013) Neuronal endoplasmic reticulum stress in axon injury and neurodegeneration. Ann Neurol 74(6):768–777
    PubMed PubMed Central Google Scholar
  123. Hetz C, Chevet E, Oakes SA (2015) Proteostasis control by the unfolded protein response. Nat Cell Biol 17(7):829–838
    CAS PubMed PubMed Central Google Scholar
  124. Vuppalanchi D, Merianda TT, Donnelly C, Pacheco A, Williams G, Yoo S, Ratan RR, Willis DE, Twiss JL (2012) Lysophosphatidic acid differentially regulates axonal mRNA translation through 5′UTR elements. Mol Cell Neurosci 50(2):136–146
    CAS PubMed PubMed Central Google Scholar
  125. Yudin D, Hanz S, Yoo S, Iavnilovitch E, Willis D, Gradus T, Vuppalanchi D, Segal-Ruder Y, Ben-Yaakov K, Hieda M, Yoneda Y, Twiss JL, Fainzilber M (2008) Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. Neuron 59(2):241–252
    CAS PubMed PubMed Central Google Scholar
  126. Ben-Yaakov K, Dagan SY, Segal-Ruder Y, Shalem O, Vuppalanchi D, Willis DE, Yudin D, Rishal I, Rother F, Bader M, Blesch A, Pilpel Y, Twiss JL, Fainzilber M (2012) Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J 31(6):1350–1363
    CAS PubMed PubMed Central Google Scholar
  127. Lezana JP, Dagan SY, Robinson A, Goldstein RS, Fainzilber M, Bronfman FC, Bronfman M (2016) Axonal PPARγ promotes neuronal regeneration after injury. Dev Neurobiol 76(6):688–701
    CAS PubMed Google Scholar
  128. Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M (2005) Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45(5):715–726
    CAS PubMed Google Scholar
  129. Yan D, Wu Z, Chisholm AD, Jin Y (2009) The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell 138(5):1005–1018
    CAS PubMed PubMed Central Google Scholar
  130. van Erp S, van Berkel AA, Feenstra EM, Sahoo PK, Wagstaff L, Twiss JL, Fawcett JW, Eva R, Ffrench-Constant C (2021) Age-related loss of axonal regeneration is reflected by the level of local translation. Exp Neurol 339:113594
    PubMed PubMed Central Google Scholar
  131. Moretti F, Rolando C, Winker M, Ivanek R, Rodriguez J, Von Kriegsheim A, Taylor V, Bustin M, Pertz O (2015) Growth cone localization of the mRNA encoding the chromatin regulator HMGN5 modulates neurite outgrowth. Mol Cell Biol 35(11):2035–2050
    CAS PubMed PubMed Central Google Scholar
  132. Cox LJ, Hengst U, Gurskaya NG, Lukyanov KA, Jaffrey SR (2008) Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell Biol 10(2):149–159
    CAS PubMed PubMed Central Google Scholar
  133. Andreassi C, Zimmermann C, Mitter R, Fusco S, De Vita S, Saiardi A, Riccio A (2010) An NGF-responsive element targets myo-inositol monophosphatase-1 mRNA to sympathetic neuron axons. Nat Neurosci 13(3):291–301
    CAS PubMed Google Scholar
  134. Villarin JM, McCurdy EP, Martínez JC, Hengst U (2016) Local synthesis of dynein cofactors matches retrograde transport to acutely changing demands. Nat Commun 7:13865
    CAS PubMed PubMed Central Google Scholar
  135. Baleriola J, Walker CA, Jean YY, Crary JF, Troy CM, Nagy PL, Hengst U (2014) Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell 158(5):1159–1172
    CAS PubMed PubMed Central Google Scholar
  136. Nijssen J, Aguila J, Hoogstraaten R, Kee N, Hedlund E (2018) Axon-Seq decodes the motor axon transcriptome and its modulation in response to ALS. Stem Cell Rep 11(6):1565–1578
    CAS Google Scholar
  137. Cohen MS, Ghosh AK, Kim HJ, Jeon NL, Jaffrey SR (2012) Chemical genetic-mediated spatial regulation of protein expression in neurons reveals an axonal function for wld(s). Chem Biol 19(2):179–187
    CAS PubMed PubMed Central Google Scholar
  138. Leung KM, Holt CE (2008) Live visualization of protein synthesis in axonal growth cones by microinjection of photoconvertible Kaede into Xenopus embryos. Nat Protoc 3(8):1318–1327
    CAS PubMed PubMed Central Google Scholar
  139. Aviner R, Geiger T, Elroy-Stein O (2014) Genome-wide identification and quantification of protein synthesis in cultured cells and whole tissues by puromycin-associated nascent chain proteomics (PUNCH-P). Nat Protoc 9(4):751–760
    CAS PubMed Google Scholar
  140. Costa CJ, Willis DE (2018) To the end of the line: Axonal mRNA transport and local translation in health and neurodegenerative disease. Dev Neurobiol 78(3):209–220
    CAS PubMed Google Scholar
  141. Gamarra M, de la Cruz A, Blanco-Urrejola M, Baleriola J (2021) Local translation in nervous system pathologies. Front Integr Neurosci 15:689208
    PubMed PubMed Central Google Scholar
  142. Nagano S, Araki T (2021) Axonal transport and local translation of mRNA in neurodegenerative diseases. Front Mol Neurosci 14:697973
    PubMed PubMed Central Google Scholar
  143. Hosseinibarkooie S, Schneider S, Wirth B (2017) Advances in understanding the role of disease-associated proteins in spinal muscular atrophy. Expert Rev Proteomics 14(7):581–592
    CAS PubMed Google Scholar
  144. Saal L, Briese M, Kneitz S, Glinka M, Sendtner M (2014) Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation. RNA 20(11):1789–1802
    CAS PubMed PubMed Central Google Scholar
  145. Fallini C, Donlin-Asp PG, Rouanet JP, Bassell GJ, Rossoll W (2016) Deficiency of the survival of motor neuron protein impairs mRNA localization and local translation in the growth cone of motor neurons. J Neurosci 36(13):3811–3820
    CAS PubMed PubMed Central Google Scholar
  146. Rihan K, Antoine E, Maurin T, Bardoni B, Bordonné R, Soret J, Rage F (2017) A new _cis_-acting motif is required for the axonal SMN-dependent Anxa2 mRNA localization. RNA 23(6):899–909
    CAS PubMed PubMed Central Google Scholar
  147. Kye MJ, Niederst ED, Wertz MH, Goncalves Ido C, Akten B, Dover KZ, Peters M, Riessland M, Neveu P, Wirth B, Kosik KS, Sardi SP, Monani UR, Passini MA, Sahin M (2014) SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 23(23):6318–6331
    CAS PubMed PubMed Central Google Scholar
  148. Yasuda K, Zhang H, Loiselle D, Haystead T, Macara IG, Mili S (2013) The RNA-binding protein Fus directs translation of localized mRNAs in APC-RNP granules. J Cell Biol 203(5):737–746
    CAS PubMed PubMed Central Google Scholar
  149. Lopez-Erauskin J, Tadokoro T, Baughn MW, Myers B, McAlonis-Downes M, Chillon-Marinas C, Asiaban JN, Artates J, Bui AT, Vetto AP, Lee SK, Le AV, Sun Y, Jambeau M, Boubaker J, Swing D, Qiu J, Hicks GG, Ouyang Z, Fu XD, Tessarollo L, Ling SC, Parone PA, Shaw CE, Marsala M, Lagier-Tourenne C, Cleveland DW, Da Cruz S (2018) ALS/FTD-linked mutation in FUS suppresses intra-axonal protein synthesis and drives disease without nuclear loss-of-function of FUS. Neuron 100(4):816-830.e7
    CAS PubMed PubMed Central Google Scholar
  150. Sun S, Ling SC, Qiu J, Albuquerque CP, Zhou Y, Tokunaga S, Li H, Qiu H, Bui A, Yeo GW, Huang EJ, Eggan K, Zhou H, Fu XD, Lagier-Tourenne C, Cleveland DW (2015) ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun 6:6171
    CAS PubMed Google Scholar
  151. Rotem N, Magen I, Ionescu A, Gershoni-Emek N, Altman T, Costa CJ, Gradus T, Pasmanik-Chor M, Willis DE, Ben-Dov IZ, Hornstein E, Perlson E (2017) ALS along the axons—expression of coding and noncoding RNA differs in axons of ALS models. Sci Rep 7:44500
    CAS PubMed PubMed Central Google Scholar
  152. Akins MR, Berk-Rauch HE, Kwan KY, Mitchell ME, Shepard KA, Korsak LI, Stackpole EE, Warner-Schmidt JL, Sestan N, Cameron HA, Fallon JR (2017) Axonal ribosomes and mRNAs associate with fragile X granules in adult rodent and human brains. Hum Mol Genet 26(1):192–209
    CAS PubMed Google Scholar
  153. Akins MR, Leblanc HF, Stackpole EE, Chyung E, Fallon JR (2012) Systematic mapping of fragile X granules in the mouse brain reveals a potential role for presynaptic FMRP in sensorimotor functions. J Comp Neurol 520(16):3687–3706
    CAS PubMed PubMed Central Google Scholar
  154. Walker CA, Randolph LK, Matute C, Alberdi E, Baleriola J, Hengst U (2018) Abeta1–42 triggers the generation of a retrograde signaling complex from sentinel mRNAs in axons. EMBO Rep 19:e45435
    PubMed PubMed Central Google Scholar
  155. Kar AN, Sun CY, Reichard K, Gervasi NM, Pickel J, Nakazawa K, Gioio AE, Kaplan BB (2014) Dysregulation of the axonal trafficking of nuclear-encoded mitochondrial mRNA alters neuronal mitochondrial activity and mouse behavior. Dev Neurobiol 74(3):333–350
    CAS PubMed Google Scholar
  156. Holt CE, Schuman EM (2013) The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80(3):648–657
    CAS PubMed PubMed Central Google Scholar

Download references