Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting (original) (raw)
Accardo A, Salsano G, Morisco A, Aurilio M, Parisi A, Maione F, Morelli G (2012) Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent. Int J Nanomedicine 7:2007–2017 CASPubMedPubMed Central Google Scholar
Akhtar MJ, Ahamed M, Alhadlaq HA, Alrokayan SA, Kumar S (2014) Targeted anticancer therapy: overexpressed receptors and nanotechnology. Clin Chim Acta 436:78–92 ArticleCASPubMed Google Scholar
Al-Ahmady ZS, Chaloin O, Kostarelos K (2014) Monoclonal antibody-targeted, temperature-sensitive liposomes: in vivo tumor chemotherapeutics in combination with mild hyperthermia. J Control Release 196:332–343 ArticleCASPubMed Google Scholar
Amin M, Badiee A, Jaafari MR (2013) Improvement of pharmacokinetic and antitumor activity of PEGylated liposomal doxorubicin by targeting with N-methylated cyclic RGD peptide in mice bearing C-26 colon carcinomas. Int J Pharm 458:324–333 ArticleCASPubMed Google Scholar
Arpicco S, Lerda C, Dalla Pozza E, Costanzo C, Tsapis N, Stella B, Palmieri M (2013) Hyaluronic acid-coated liposomes for active targeting of gemcitabine. Eur J Pharm Biopharm 85:373–380 ArticleCASPubMed Google Scholar
Awada A, Bondarenko IN, Bonneterre J, Nowara E, Ferrero JM, Bakshi AV, CT4002 Study Group (2014) A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 25:824–831 ArticleCASPubMed Google Scholar
Banerjee R, Tyagi P, Li S, Huang L (2004) Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int J Cancer 112:693–700 ArticleCASPubMed Google Scholar
Bao A, Phillips WT, Goins B, Zheng X, Sabour S, Natarajan M, Ross Woolley F, Zavaleta C, Otto RA (2006) Potential use of drug carried-liposomes for cancer therapy via direct intratumoral injection. Int J Pharm 316:162–169 ArticleCASPubMed Google Scholar
Bashyal S, Noh G, Keum T, Choi YW, Lee S (2016) Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. J Pharm Invest 46:205–220 ArticleCAS Google Scholar
Benhabbour SR, Sheardown H, Adronov A (2008) Protein resistance of PEG-functionalized dendronized surfaces: effect of PEG molecular weight and dendron generation. Macromolecules 41:4817–4823 ArticleCAS Google Scholar
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25 ArticleCASPubMed Google Scholar
Bidlingmaier S, He J, Wang Y, An F, Feng J, Barbone D, Liu B (2009) Identification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma. Cancer Res 69:1570–1577 ArticleCASPubMedPubMed Central Google Scholar
Biswas S, Deshpande PP, Perche F, Dodwadkar NS, Sane SD, Torchilin VP (2013a) Octa-arginine-modified pegylated liposomal doxorubicin: an effective treatment strategy for non-small cell lung cancer. Cancer Lett 335:191–200 ArticleCASPubMedPubMed Central Google Scholar
Biswas S, Dodwadkar NS, Deshpande PP, Parab S, Torchilin VP (2013b) Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity. Eur J Pharm Biopharm 84:517–525 ArticleCASPubMedPubMed Central Google Scholar
Bondì ML, Craparo EF, Giammona G, Cervello M, Azzolina A, Diana P, Martorana A, Cirrincione G (2007) Nanostructured lipid carriers-containing anticancer compounds: preparation, characterization, and cytotoxicity studies. Drug Deliv 14:61–67 ArticlePubMedCAS Google Scholar
Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212 Article Google Scholar
Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447 ArticleCASPubMed Google Scholar
Bruun J, Larsen TB, Jølck RI, Eliasen R, Holm R, Gjetting T, Andresen TL (2015) Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood-brain barrier and glioma cells. Int J Nanomedicine 10:5995–6008 CASPubMedPubMed Central Google Scholar
Cai L, Wang X, Wang W, Qiu N, Wen J, Duan X, Wei Y (2012) Peptide ligand and PEG-mediated long-circulating liposome targeted to FGFR overexpressing tumor in vivo. Int J Nanomedicine 7:4499–4510 CASPubMedPubMed Central Google Scholar
Cai D, Gao W, He B, Dai W, Zhang H, Wang X, Zhang Q (2014) Hydrophobic penetrating peptide PFVYLI-modified stealth liposomes for doxorubicin delivery in breast cancer therapy. Biomaterials 35:2283–2294 ArticleCASPubMed Google Scholar
Chang M, Lu S, Zhang F, Zuo T, Guan Y, Wei T, Lin G (2015) RGD-modified pH-sensitive liposomes for docetaxel tumor targeting. Colloids Surf B Biointerf 129:175–182 ArticleCAS Google Scholar
Chen DB, Yang TZ, Wang-Liang LU, Zhang Q (2001) In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull 49:1444–1447 ArticleCASPubMed Google Scholar
Chen Y, Sen J, Bathula SR, Yang Q, Fittipaldi R, Huang L (2009) Novel cationic lipid that delivers siRNA and enhances therapeutic effect in lung cancer cells. Mol Pharm 6:696–705 ArticleCASPubMedPubMed Central Google Scholar
Chen D, Jiang X, Huang Y, Zhang C, Ping Q (2010a) pH-sensitive mPEG-Hz-cholesterol conjugates as a liposome delivery system. J Bioact Compat Polym 25:527–542 ArticleCAS Google Scholar
Chen H, Tang L, Qin Y, Yin Y, Tang J, Tang W, He Q (2010b) Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur J Pharm Sci 40:94–102 ArticleCASPubMed Google Scholar
Chen X, Wang X, Wang Y, Hu J, Yang L, Xiao W, Fu A, Cai L, Li X, Ye X, Liu Y, Wu W, Shao X, Mao Y, Yang Lwei Y, Chen L (2010c) Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. J Controll Release 145:17–25 ArticleCAS Google Scholar
Chen D, Liu W, Shen Y, Mu H, Zhang Y, Liang R, Fu F (2011a) Effects of a novel pH-sensitive liposome with cleavable esterase-catalyzed and pH-responsive double smart mPEG lipid derivative on ABC phenomenon. Int J Nanomedicine 6:2053–2061 ArticleCASPubMedPubMed Central Google Scholar
Chen H, Qin Y, Zhang Q, Jiang W, Tang L, Liu J, He Q (2011b) Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas. Eur J Pharm Sci 44:164–173 ArticleCASPubMed Google Scholar
Chen J, Chen H, Cui S, Xue B, Tian J, Achilefu S, Gu Y (2012) Glucosamine derivative modified nanostructured lipid carriers for targeted tumor delivery. J Mater Chem 22:5770–5783 ArticleCAS Google Scholar
Cheng L, Huang FZ, Cheng LF, Zhu YQ, Hu Q, Li L, Chen DW (2014) GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation. Int J Nanomedicine 9:921–935 ArticlePubMedPubMed Central Google Scholar
Chono S, Li SD, Conwell CC, Huang L (2008) An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release 131:64–69 ArticleCASPubMedPubMed Central Google Scholar
Chou LY, Ming K, Chan WC (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40:233–245 ArticleCASPubMed Google Scholar
Copolovici DM, Langel K, Eriste E, Langel U (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8:1972–1994 ArticleCASPubMed Google Scholar
Dai W, Jin W, Zhang J, Wang X, Wang J, Zhang X, Zhang Q (2012) Spatiotemporally controlled co-delivery of anti-vasculature agent and cytotoxic drug by octreotide-modified stealth liposomes. Pharm Res 29:2902–2911 ArticleCASPubMed Google Scholar
Dams ET, Laverman P, Oyen WJ, Storm G, Scherphof GL, van der Meer JW, Boerman OC (2000) Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292:1071–1079 CASPubMed Google Scholar
De La Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 64:967–978 ArticleCAS Google Scholar
Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, Beliveau R (2008) Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J Neurochem 106:1534–1544 ArticleCASPubMed Google Scholar
Ding Y, Sun D, Wang GL, Yang HG, Xu HF, Chen JH, Wang ZQ (2015) An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery. Int J Nanomedicine 10:6199–6214 CASPubMedPubMed Central Google Scholar
Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:691–744 CASPubMed Google Scholar
Du J, Li L (2016) Which one performs better for targeted lung cancer combination therapy: pre-or post-bombesin-decorated nanostructured lipid carriers? Drug Deliv 23:1799–1809 ArticleCASPubMed Google Scholar
Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaı̈ssa M, Spik G, Pierce A (1999) Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem 274:7011–7017 ArticleCASPubMed Google Scholar
Fishman MN, Elsayed Y, Damjanov N, Steinberg JL, Mahany JJ, Nieves JA, Sherman JW (2004) Phase I study of liposome entrapped paclitaxel (LEP-ETU) in patients with advanced cancer. J Clin Oncol 22:2110–2110 Article Google Scholar
Fundarò A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR (2000) Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after iv administration to rats. Pharmacol Res 42:337–343 ArticlePubMedCAS Google Scholar
Furuhata M, Izumisawa T, Kawakami H, Toma K, Hattori Y, Maitani Y (2009) Decaarginine-PEG-liposome enhanced transfection efficiency and function of arginine length and PEG. Int J Pharm 371:40–46 ArticleCASPubMed Google Scholar
Gaillard PJ, Appeldoorn CC, Dorland R, van Kregten J, Manca F, Vugts DJ, van Tellingen O (2014) Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PloS ONE 9:e82331 ArticlePubMedPubMed CentralCAS Google Scholar
Gao J, Sun J, Li H, Liu W, Zhang Y, Li B, Guo Y (2010) Lyophilized HER2-specific PEGylated immunoliposomes for active siRNA gene silencing. Biomaterials 31:2655–2664 ArticleCASPubMed Google Scholar
Gao J, Liu W, Xia Y, Li W, Sun J, Chen H, Deng L (2011) The promotion of siRNA delivery to breast cancer overexpressing epidermal growth factor receptor through anti-EGFR antibody conjugation by immunoliposomes. Biomaterials 32:3459–3470 ArticleCASPubMed Google Scholar
Gao J, Yu Y, Zhang Y, Song J, Chen H, Li W, Qian W, Deng L, Kou G, Chen J, Guo Y (2012) EGFR-specific PEGylated immunoliposomes for active siRNA delivery in hepatocellular carcinoma. Biomaterials 33:270–282 ArticleCASPubMed Google Scholar
Garg A, Tisdale AW, Haidari E, Kokkoli E (2009) Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide. Int J Pharm 366:201–210 ArticleCASPubMed Google Scholar
Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56:1194–1198 CASPubMed Google Scholar
Gill PS, Wernz J, Scadden DT, Cohen P, Mukwaya GM, von Roenn JH, Rarick MU (1996) Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol 14:2353–2364 ArticleCASPubMed Google Scholar
Ginn C, Khalili H, Lever R, Brocchini S (2014) PEGylation and its impact on the design of new protein-based medicines. Future Med Chem 6:1829–1846 ArticleCASPubMed Google Scholar
Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ (2001) Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 19:3312–3322 ArticleCASPubMed Google Scholar
Goutayer M, Dufort S, Josserand V, Royère A, Heinrich E, Vinet F, Texier I (2010) Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging. Eur J Pharm Biopharm 75:137–147 ArticleCASPubMed Google Scholar
Gullotti E, Yeo Y (2009) Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6:1041–1051 ArticleCASPubMedPubMed Central Google Scholar
Guo Z, He B, Jin H, Zhang H, Dai W, Zhang L, Zhang Q (2014) Targeting efficiency of RGD-modified nanocarriers with different ligand intervals in response to integrin αvβ3 clustering. Biomaterials 35:6106–6117 ArticleCASPubMed Google Scholar
Gupta B, Torchilin VP (2007) Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer Immunol Immunother 56:1215–1223 ArticleCASPubMed Google Scholar
Han Y, Zhang Y, Li D, Chen Y, Sun J, Kong F (2014) Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int J Nanomedicine 9:4107–4116 PubMedPubMed Central Google Scholar
Hatakeyama H, Akita H, Kogure K, Oishi M, Nagasaki Y, Kihira Y, Harashima H (2007) Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther 14:68–77 ArticleCASPubMed Google Scholar
Hatakeyama H, Akita H, Ito E, Hayashi Y, Oishi M, Nagasaki Y, Baba Y (2011) Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials 32:4306–4316 ArticleCASPubMed Google Scholar
He Y, Zhang L, Song C (2010) Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes. Int J Nanomedicine 5:697–705 CASPubMedPubMed Central Google Scholar
Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612 ArticleCASPubMedPubMed Central Google Scholar
Hong RL, Huang CJ, Tseng YL, Pang VF, Chen ST, Liu JJ, Chang FH (1999) Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice. Clin Cancer Res 5:3645–3652 CASPubMed Google Scholar
Hou C, Tu Z, Mach R, Kung HF, Kung MP (2006) Characterization of a novel iodinated sigma-2 receptor ligand as a cell proliferation marker. Nucl Med Biol 33:203–209 ArticleCASPubMed Google Scholar
Immordino ML, Brusa P, Arpicco S, Stella B, Dosio F, Cattel L (2003) Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J Control Release 91:417–429 ArticleCASPubMed Google Scholar
Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315 ArticleCASPubMedPubMed Central Google Scholar
Ishida T, Maeda R, Ichihara M, Mukai Y, Motoki Y, Manabe Y, Kiwada H (2002) The accelerated clearance on repeated injection of pegylated liposomes in rats: laboratory and histopathological study. Cell Mol Biol Lett 7:286–286 PubMed Google Scholar
Iwamaru Y, Shimizu Y, Imamura M, Murayama Y, Endo R, Tagawa Y, Yokoyama T (2008) Lactoferrin induces cell surface retention of prion protein and inhibits prion accumulation. J Neurochem 107:636–646 ArticleCASPubMed Google Scholar
Iwase Y, Maitani Y (2011) Octreotide-targeted liposomes loaded with CPT-11 enhanced cytotoxicity for the treatment of medullary thyroid carcinoma. Mol Pharm 8:330–337 ArticleCASPubMed Google Scholar
Iyer AK, Su Y, Feng J, Lan X, Zhu X, Liu Y, Liu B (2011) The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma. Biomaterials 32:2605–2613 ArticleCASPubMedPubMed Central Google Scholar
Jain A, Agarwal A, Majumder S, Lariya N, Khaya A, Agrawal H, Agrawal GP (2010) Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release 148:359–367 ArticleCASPubMed Google Scholar
Jain A, Kesharwani P, Garg NK, Jain A, Jain SA, Jain AK, Katare OP (2015) Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf B Biointerf 134:47–58 ArticleCAS Google Scholar
Jiang J, Yang SJ, Wang JC, Yang LJ, Xu ZZ, Yang T, Zhang Q (2010) Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur J Pharm Biopharm 76:170–178 ArticleCASPubMed Google Scholar
Joshi MD, Müller RH (2009) Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 71:161–172 ArticleCASPubMed Google Scholar
Kang MJ, Park SH, Kang MH, Park MJ, Choi YW (2013) Folic acid-tethered Pep-1 peptide-conjugated liposomal nanocarrier for enhanced intracellular drug delivery to cancer cells: conformational characterization and in vitro cellular uptake evaluation. Int J Nanomedicine 8:1155–1165 ArticlePubMedPubMed CentralCAS Google Scholar
Kang MH, Park MJ, Yoo HJ, Lee SG, Kim SR, Yeom DW, Kang MJ, Choi YW (2014) RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated liposomes for enhanced intracellular drug delivery to hepsin-expressing cancer cells. Eur J Pharm Biopharm 87:489–499 ArticleCASPubMed Google Scholar
Kang MH, Yoo HJ, Kwon YH, Yoon HY, Lee SG, Kim SR, Choi YW (2015) Design of multifunctional liposomal nanocarriers for folate receptor-specific intracellular drug delivery. Mol Pharm 12:4200–4213 ArticleCASPubMed Google Scholar
Khajavinia A, Varshosaz J, Dehkordi AJ (2012) Targeting etoposide to acute myelogenous leukemia cells using nanostructured lipid carriers coated with transferrin. Nanotechnology 23:1–13 ArticleCAS Google Scholar
Khalid MN, Simard P, Hoarau D, Dragomir A, Leroux JC (2006) Long circulating poly (ethylene glycol)-decorated lipid nanocapsules deliver docetaxel to solid tumors. Pharm Res 23:752–758 ArticleCASPubMed Google Scholar
Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H (2011) Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release 153:141–148 ArticleCASPubMed Google Scholar
Kim IY, Kang YS, Lee DS, Park HJ, Choi EK, Oh YK, Kim JS (2009) Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. J Control Release 140:55–60 ArticleCASPubMed Google Scholar
Kim HK, Thompson DH, Jang HS, Chung YJ, Van den Bossche J (2013) pH-responsive biodegradable assemblies containing tunable phenyl-substituted vinyl ethers for use as efficient gene delivery vehicles. ACS Appl Mater Interfaces 5:5648–5658 ArticleCASPubMedPubMed Central Google Scholar
Ko AH, Tempero MA, Shan YS, Su WC, Lin YL, Dito E, Chen LT (2013) A multinational phase 2 study of nanoliposomal irinotecan sucrosofate (PEP02, MM-398) for patients with gemcitabine-refractory metastatic pancreatic cancer. Br J Cancer 109:920–925 ArticleCASPubMedPubMed Central Google Scholar
Kobayashi T, Ishida T, Okada Y, Ise S, Harashima H, Kiwada H (2007) Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm 329:94–102 ArticleCASPubMed Google Scholar
Koren E, Apte A, Jani A, Torchilin VP (2012) Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 160:264–273 ArticleCASPubMed Google Scholar
Koshkaryev A, Piroyan A, Torchilin VP (2012) Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes. Cancer Biol Ther 13:50–60 ArticleCASPubMedPubMed Central Google Scholar
Kuai R, Yuan W, Li W, Qin Y, Tang J, Yuan M, He Q (2011) Targeted delivery of cargoes into a murine solid tumor by a cell-penetrating peptide and cleavable poly (ethylene glycol) comodified liposomal delivery system via systemic administration. Mol Pharm 8:2151–2161 ArticleCASPubMed Google Scholar
Kulkarni PS, Haldar MK, Nahire RR, Katti P, Ambre AH, Muhonen WW, Shrivastava DK (2014) MMP-9 responsive PEG cleavable nanovesicles for efficient delivery of chemotherapeutics to pancreatic cancer. Mol Pharm 11:2390–2399 ArticleCASPubMedPubMed Central Google Scholar
Kwon YH, Shin TH, Jang MH, Yoon HY, Kang MH, Kang MJ, Choi YW (2017) Surface-modification of RIPL peptide-conjugated liposomes to achieve steric stabilization and pH sensitivity. J Nanosci Nanotechnol 17:1008–1017 Google Scholar
Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161:175–187 ArticleCASPubMed Google Scholar
Landesman-Milo D, Goldsmith M, Ben-Arye SL, Witenberg B, Brown E, Leibovitch S, Peer D (2013) Hyaluronan grafted lipid-based nanoparticles as RNAi carriers for cancer cells. Cancer Lett 334:221–227 ArticleCASPubMed Google Scholar
Li SD, Huang L (2010) Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release 145:178–181 ArticleCASPubMedPubMed Central Google Scholar
Li X, Ding L, Xu Y, Wang Y, Ping Q (2009a) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373:116–123 ArticleCASPubMed Google Scholar
Li X, Wang D, Zhang J, Pan W (2009b) Preparation and pharmacokinetics of docetaxel based on nanostructured lipid carriers. J Pharm Pharmacol 61:1485–1492 ArticleCASPubMed Google Scholar
Li X, Tian T, Zhang J, Zhao X, Chen X, Jiang Y, Wang D, Pan W (2011) In vitro and in vivo evaluation of folate receptor-targeting amphiphilic copolymer modified liposomes loaded with docetaxel. Int J Nanomedicine 6:1167–1184 CASPubMedPubMed Central Google Scholar
Li Y, Lee RJ, Yu K, Bi Y, Qi Y, Sun Y, Teng L (2016) Delivery of siRNA using lipid nanoparticles modified with cell penetrating peptide. ACS Appl Mater Interfaces 8:26613–26621 ArticleCASPubMed Google Scholar
Liu D, Zhang N (2010) Cancer chemotherapy with lipid-based nanocarriers. Crit Rev Ther Drug Carrier Syst 27(:):371–417 CASPubMed Google Scholar
Liu D, Liu F, Liu Z, Wang L, Zhang N (2011) Tumor specific delivery and therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody. Mol Pharm 8:2291–2301 ArticleCASPubMed Google Scholar
Liu Y, Ran R, Chen J, Kuang Q, Tang J, Mei L, He Q (2014) Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials 35:4835–4847 ArticleCASPubMed Google Scholar
Liu Y, Mei L, Yu Q, Xu C, Qiu Y, Yang Y, Shi K, Zhang Q, Gao H, Zhang Z, He Q (2015) Multifunctional tandem peptide modified paclitaxel-loaded liposomes for the treatment of vasculogenic mimicry and cancer stem cells in malignant glioma. ACS Appl Mater Interfaces 7:16792–16801 ArticleCASPubMed Google Scholar
Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K (2015) Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm 482:2–10 ArticleCASPubMed Google Scholar
Luria-Pérez R, Helguera G, Rodríguez JA (2016) Antibody-mediated targeting of the transferrin receptor in cancer cells. Boletín Médico del Hospital Infantil de México 73:372–379 Article Google Scholar
Madhankumar AB, Slagle-Webb B, Wang X, Yang QX, Antonetti DA, Miller PA, Sheehan JM, Connor JR (2009) Efficacy of interleukin-13 receptor–targeted liposomal doxorubicin in the intracranial brain tumor model. Mol Cancer Ther 8:648–654 ArticleCASPubMed Google Scholar
Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79 ArticleCASPubMed Google Scholar
Mamot C, Ritschard R, Vogel B, Dieterle T, Bubendorf L, Hilker C, Rochlitz C (2011) A phase I study of doxorubicin-loaded anti-EGFR immunoliposomes in patients with advanced solid tumors. J Clin Oncol 29:3029–3029 Article Google Scholar
Mansour AM, Drevs J, Esser N, Hamada FM, Badary OA, Unger C, Kratz F (2003) A new approach for the treatment of malignant melanoma: enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved by matrix metalloproteinase 2. Cancer Res 63:4062–4066 CASPubMed Google Scholar
Marasco D, Perretta G, Sabatella M, Ruvo M (2008) Past and future perspectives of synthetic peptide libraries. Curr Protein Pept Sci 9:447–467 ArticleCASPubMed Google Scholar
Maruyama K (2011) Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 63:161–169 ArticleCASPubMed Google Scholar
Mattheolabakis G, Milane L, Singh A, Amiji MM (2015) Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target 23:605–618 ArticleCASPubMed Google Scholar
McNeeley KM, Karathanasis E, Annapragada AV, Bellamkonda RV (2009) Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials 30:3986–3995 ArticleCASPubMed Google Scholar
Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196 ArticleCASPubMed Google Scholar
Mei L, Fu L, Shi K, Zhang Q, Liu Y, Tang J, He Q (2014) Increased tumor targeted delivery using a multistage liposome system functionalized with RGD TAT and cleavable PEG. Int J Pharm 468:26–38 ArticleCASPubMed Google Scholar
Mishra S, Webster P, Davis ME (2004) PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 83:97–111 ArticleCASPubMed Google Scholar
Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6:9–24 ArticleCASPubMed Google Scholar
Mo R, Gu Z (2016) Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater Today 19 :274–283 ArticleCAS Google Scholar
Mohammadi Ghalaei P, Varshosaz J, Sadeghi Aliabadi H (2014) Evaluating cytotoxicity of hyaluronate targeted solid lipid nanoparticles of etoposide on SK-OV-3 cells. J Drug Deliv 7:1–7 ArticleCAS Google Scholar
Müller RH, Radtke M, Wissing SA (2002a) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:S131–S155 ArticlePubMed Google Scholar
Müller RH, Radtke M, Wissing SA (2002b) Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242:121–128 ArticlePubMed Google Scholar
Muthu MS, Kulkarni SA, Raju A, Feng SS (2012) Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials 33:3494–3501 ArticleCASPubMed Google Scholar
Nakamura Y, Kogure K, Futaki S, Harashima H (2007) Octaarginine-modified multifunctional envelope-type nano device for siRNA. J Control Release 11:360–367 ArticleCAS Google Scholar
Navarro G, Movassaghian S, Torchilin VP (2014) Multifunctional nanocarriers for tumor drug delivery and imaging In: Mitra AK (ed) Drug delivery, 1st edn. Jones & Bartlett learning, Burlington, pp 157–187 Google Scholar
Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med (Praha) 53 :397–411 CAS Google Scholar
Negussie AH, Miller JL, Reddy G, Drake SK, Wood BJ, Dreher MR (2010) Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J Control Release 143:265–273 ArticleCASPubMedPubMed Central Google Scholar
Oumzil K, Khiati S, Grinstaff MW, Barthélémy P (2011) Reduction-triggered delivery using nucleoside-lipid based carriers possessing a cleavable PEG coating. J Control Release 151:123–130 ArticleCASPubMed Google Scholar
Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102 ArticleCASPubMed Google Scholar
Paliwal SR, Paliwal R, Mishra N, Mehta A, Vyas SP (2010) A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy. Curr Cancer Drug Targets 10:343–353 ArticleCASPubMed Google Scholar
Paliwal SR, Paliwal R, Pal HC, Saxena AK, Sharma PR, Gupta PN, Vyas SP (2011) Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy. Mol Pharm 9:176–186 ArticlePubMedCAS Google Scholar
Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184 ArticleCASPubMed Google Scholar
Patel DK, Tripathy S, Nair SK, Kesharwani R (2013) Nanostructured lipid carrier (NLC) a modern approach for topical delivery: a review. World J Pharm Pharma Sci 2:921–938 CAS Google Scholar
Qhattal HSS, Liu X (2011) Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Mol Pharm 8:1233–1246 ArticleCASPubMedPubMed Central Google Scholar
Qin Y, Chen H, Yuan W, Kuai R, Zhang Q, Xie F, He Q (2011a) Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery. Int J Pharm 419:85–95 ArticleCASPubMed Google Scholar
Qin Y, Chen H, Zhang Q, Wang X, Yuan W, Kuai R, Liu J (2011b) Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm 420:304–312 ArticleCASPubMed Google Scholar
Qu CY, Zhou M, Chen YW, Chen MM, Shen F, Xu LM (2015) Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy. Int J Nanomedicine 10:3911–3920 CASPubMedPubMed Central Google Scholar
Ravar F, Saadat E, Gholami M, Dehghankelishadi P, Mahdavi M, Azami S, Dorkoosh FA (2016) Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J Control Release 229:10–22 ArticleCASPubMed Google Scholar
Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RR (2004) Etoposide-incorporated tripalmitin nanoparticles with different surface charge: formulation, characterization, radiolabeling, and biodistribution studies. AAPS J 6:55–64 ArticlePubMed Central Google Scholar
Remaut K, Lucas B, Braeckmans K, Demeester J, De Smedt SC (2007) Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides. J Control Release 117:256–266 ArticleCASPubMed Google Scholar
Rodriguez BL, Blando JM, Lansakara PD, Kiguchi Y, DiGiovanni J, Cui Z (2013) Antitumor activity of tumor-targeted RNA replicase-based plasmid that expresses interleukin-2 in a murine melanoma model. Mol Pharm 10:2404–2415 ArticleCASPubMedPubMed Central Google Scholar
Romberg B, Hennink WE, Storm G (2008) Sheddable coatings for long-circulating nanoparticles. Pharm Res 25:55–71 ArticleCASPubMed Google Scholar
Ross JS, Schenkein DP, Pietrusko R, Rolfe M, Linette GP, Stec J, Hortobagyi GN (2004) Targeted therapies for cancer 2004. Am J Clin Pathol 122:598–609 ArticleCASPubMed Google Scholar
Sakurai Y, Hatakeyama H, Sato Y, Hyodo M, Akita H, Ohga N, Harashima H (2014) RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system. J Control Release 173:110–118 ArticleCASPubMed Google Scholar
Sankhala KK, Mita AC, Adinin R, Wood L, Beeram M, Bullock S, Phan A (2009) A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. J Clin Oncol 27(:):2535 Google Scholar
Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 9:467–483 CASPubMedPubMed Central Google Scholar
Scherphof GL, Dijkstra JAN, Spanjer HH, Derksen JT, Roerdink FH (1985) Uptake and intracellular processing of targeted and nontargeted liposomes by Rat Kupffer Cells in vivo and in vitro. Ann N Y Acad Sci 446:368–384 ArticleCASPubMed Google Scholar
Shan D, Li J, Cai P, Prasad P, Liu F, Rauth AM, Wu XY (2015) RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of αvβ3 integrin-overexpressing breast cancer cells. Drug Deliv Transl Res 5:15–26 ArticleCASPubMed Google Scholar
Shao Z, Shao J, Tan B, Guan S, Liu Z, Zhao Z, Zhao J (2015) Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int J Nanomedicine 10:1223–1233 ArticleCASPubMedPubMed Central Google Scholar
Shehata T, Ogawara K, Higaki K, Kimura T (2008) Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int J Pharm 359:272–279 ArticleCASPubMed Google Scholar
Shen H, Shi S, Zhang Z, Gong T, Sun X (2015) Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics 5 :755–771 ArticleCASPubMedPubMed Central Google Scholar
Shi C, Gao F, Gao X, Liu Y (2015) A novel anti-VEGF165 monoclonal antibody-conjugated liposomal nanocarrier system: physical characterization and cellular uptake evaluation in vitro and in vivo. Biomed Pharmacother 69:191–200 ArticleCASPubMed Google Scholar
Shmeeda H, Tzemach D, Mak L, Gabizon A (2009) Her2-targeted pegylated liposomal doxorubicin: retention of target-specific binding and cytotoxicity after in vivo passage. J Control Release 136:155–160 ArticleCASPubMed Google Scholar
Shmeeda H, Amitay Y, Gorin Y, Tzemach D, Mak L, Ogorka J, Kumar S, Zhang JA, Gabizon A (2010) Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells. J Control Release 146:76–83 ArticleCASPubMed Google Scholar
Sinha R, Kim GJ, Nie S, Shin D (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5:1909–1917 ArticleCASPubMed Google Scholar
Song S, Mao G, Du J, Zhu X (2016) Novel RGD containing, temozolomide-loading nanostructured lipid carriers for glioblastoma multiforme chemotherapy. Drug Deliv 23:1404–1408 ArticleCASPubMed Google Scholar
Srinivasarao M, Galliford CV, Low PS (2015) Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 14:203–219 ArticleCASPubMed Google Scholar
Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427 ArticleCASPubMed Google Scholar
Su Z, Niu J, Xiao Y, Ping Q, Sun M, Huang A, Yuan D (2011) Effect of octreotide–polyethylene glycol (100) monostearate modification on the pharmacokinetics and cellular uptake of nanostructured lipid carrier loaded with hydroxycamptothecine. Mol Pharm 8:1641–1651 ArticleCASPubMed Google Scholar
Su Z, Shi Y, Xiao Y, Sun M, Ping Q, Zong L, Chen Y (2013) Effect of octreotide surface density on receptor-mediated endocytosis in vitro and anticancer efficacy of modified nanocarrier in vivo after optimization. Int J Pharm 447:281–292 ArticleCASPubMed Google Scholar
Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162 ArticleCASPubMed Google Scholar
Sun M, Gao Y, Zhu Z, Wang H, Han C, Yang X, Pan W (2016) A systematic in vitro investigation on poly-arginine modified nanostructured lipid carrier: pharmaceutical characteristics, cellular uptake, mechanisms and cytotoxicity. Asian J Pharm Sci 12:51–58 Article Google Scholar
Tang J, Zhang L, Fu H, Kuang Q, Gao H, Zhang Z, He Q (2014) A detachable coating of cholesterol-anchored PEG improves tumor targeting of cell-penetrating peptide-modified liposomes. Acta Pharm Sin B 4 :67–73 ArticlePubMedPubMed Central Google Scholar
Taratula O, Kuzmov A, Shah M, Garbuzenko OB, Minko T (2013) Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Control Release 171:349–357 ArticleCASPubMedPubMed Central Google Scholar
Tavano L, Muzzalupo R (2016) Multi-functional vesicles for cancer therapy: the ultimate magic bullet. Colloids Surf B Biointerf 147:161–171 ArticleCAS Google Scholar
Temsamani J, Vidal P (2004) The use of cell-penetrating peptides for drug delivery. Drug Discov Today 9:1012–1019 ArticleCASPubMed Google Scholar
Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M (2006) Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release 111:333–342 ArticleCASPubMed Google Scholar
Torchilin VP (2008) Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 60:548–558 ArticleCASPubMed Google Scholar
Torchilin VP (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 71:431–444 ArticleCASPubMed Google Scholar
Trabulo S, Cardoso AL, Mano M, De Lima MCP (2010) Cell-penetrating peptides—mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals 3:961–993 ArticleCASPubMedPubMed Central Google Scholar
Tran TH, Choi JY, Ramasamy T, Truong DH, Nguyen CN, Choi HG, Kim JO (2014) Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr Polym 114:407–415 ArticleCASPubMed Google Scholar
Ucar E, Teksoz S, Ichedef C, Kilcar AY, Medine EI, Ari K, Unak P (2017) Synthesis, characterization and radiolabeling of folic acid modified nanostructured lipid carriers as a contrast agent and drug delivery system. Appl Radiat Isot 119:72–79 ArticleCASPubMed Google Scholar
Üner M (2006) Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie 61:375–386 PubMed Google Scholar
Üner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2:289–300 PubMedPubMed Central Google Scholar
Vllasaliu D, Fowler R, Stolnik S (2014) PEGylated nanomedicines: recent progress and remaining concerns. Expert Opin Drug Deliv 11:139–154 ArticleCASPubMed Google Scholar
Walkey CD, Olsen JB, Guo H, Emili A, Chan WC (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134:2139–2147 ArticleCASPubMed Google Scholar
Wan F, You J, Sun Y, Zhang XG, Cui FD, Du YZ, Yuan H, Hu FQ (2008) Studies on PEG-modified SLNs loading vinorelbine bitartrate (I): preparation and evaluation in vitro. Int J Pharm 359:104–110 ArticleCASPubMed Google Scholar
Wan Y, Han J, Fan G, Zhang Z, Gong T, Sun X (2013) Enzyme-responsive liposomes modified adenoviral vectors for enhanced tumor cell transduction and reduced immunogenicity. Biomaterials 34:3020–3030 ArticleCASPubMed Google Scholar
Wang L, Su W, Liu Z, Zhou M, Chen S, Chen Y, Han Z (2012) CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials 33:5107–5114 ArticleCASPubMed Google Scholar
Wang RH, Cao HM, Tian ZJ, Jin B, Wang Q, Ma H, Wu J (2015) Efficacy of dual-functional liposomes containing paclitaxel for treatment of lung cancer. Oncol Rep 33:783–791 CASPubMed Google Scholar
Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677 ArticleCASPubMed Google Scholar
Wei M, Xu Y, Zou Q, Tu L, Tang C, Xu T, Wu C (2012) Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin. Eur J Pharm Sci 46:131–141 ArticleCASPubMed Google Scholar
Wicki A, Rochlitz C, Orleth A, Ritschard R, Albrecht I, Herrmann R, Mamot C (2012) Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin Cancer Res 18:454–464 ArticleCASPubMed Google Scholar
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157 ArticleCASPubMed Google Scholar
Wissing SA, Kayser O, Müller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–1272 ArticleCASPubMed Google Scholar
Wu L, Tang C, Yin C (2010) Folate-mediated solid–liquid lipid nanoparticles for paclitaxel-coated poly(ethylene glycol). Drug Dev Ind Pharm 36:439–448 ArticleCASPubMed Google Scholar
Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF (2013a) Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 65:121–138 ArticleCASPubMed Google Scholar
Xu X, Wang L, Xu HQ, Huang XE, Qian YD, Xiang J (2013b) Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev 14:2591–2594 ArticlePubMed Google Scholar
Yang XY, Li YX, Li M, Zhang L, Feng LX, Zhang N (2013) Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett 334:338–345 ArticleCASPubMed Google Scholar
Yang G, Yang T, Zhang W, Lu M, Ma X, Xiang G (2014a) In vitro and in vivo antitumor effects of folate-targeted ursolic acid Stealth liposome. J Agric Food Chem 62:2207–2215 ArticleCASPubMed Google Scholar
Yang ZZ, Li JQ, Wang ZZ, Dong DW, Qi XR (2014b) Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials 35:5226–5239 ArticleCASPubMed Google Scholar
Ye P, Zhang W, Yang T, Lu Y, Lu M, Gai Y, Ma X, Xiang G (2014) Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting. Int J Nanomedicine 9:2167–2178 ArticlePubMedPubMed Central Google Scholar
Yuan L, Liu C, Chen Y, Zhang Z, Zhou L, Qu D (2013) Antitumor activity of tripterine via cell-penetrating peptide-coated nanostructured lipid carriers in a prostate cancer model. Int J Nanomedicine 8:4339–4350 PubMedPubMed Central Google Scholar
Yuan M, Qiu Y, Zhang L, Gao H, He Q (2016) Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma. Drug Deliv 23:1171–1183 CASPubMed Google Scholar
Zagar TM, Vujaskovic Z, Formenti S, Rugo H, Muggia F, O’Connor B, Straube W (2014) Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int J Hyperthermia 30:285–294 ArticleCASPubMedPubMed Central Google Scholar
Zara GP, Bargoni A, Cavalli R, Fundarò A, Vighetto D, Gasco MR (2002) Pharmacokinetics and tissue distribution of idarubicin- loaded solid lipid nanoparticles after duodenal administration to rats. J Pharm Sci 91:1324–1333 ArticleCASPubMed Google Scholar
Zeng F, Ju RJ, Li XT, Lu WL (2014) Advances in investigations on the mechanism of cancer multidrug resistance and the liposomes-based treatment strategy. J Pharm Invest 44:493–504 ArticleCAS Google Scholar
Zhang X, Gan Y, Gan L, Nie S, Pan W (2008a) PEGylated nanostructured lipid carriers loaded with 10- hydroxycamptothecin: an efficient carrier with enhanced anti- tumour effects against lung cancer. J Pharm Pharmacol 60:1077–1087 ArticleCASPubMed Google Scholar
Zhang XG, Miao J, Dai YQ, Du YZ, Yuan H, Hu FQ (2008b) Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int J Pharm 361:239–244 ArticleCASPubMed Google Scholar
Zhang J, Jin W, Wang X, Wang J, Zhang X, Zhang Q (2010) A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol Pharm 7:1159–1168 ArticlePubMedCAS Google Scholar
Zhang X, Guo S, Fan R, Yu M, Li F, Zhu C, Gan Y (2012) Dual-functional liposome for tumor targeting and overcoming multidrug resistance in hepatocellular carcinoma cells. Biomaterials 33:7103–7114 ArticleCASPubMed Google Scholar
Zhang L, Wang Y, Yang Y, Liu Y, Ruan S, Zhang Q, Gao H (2015) High tumor penetration of paclitaxel loaded pH sensitive cleavable liposomes by depletion of tumor collagen I in breast cancer. ACS Appl Mater Interfaces 7:9691–9701 ArticleCASPubMed Google Scholar
Zhang Q, Deng C, Fu Y, Sun X, Gong T, Zhang Z (2016a) Repeated administration of hyaluronic acid coated liposomes with improved pharmacokinetics and reduced immune response. Mol Pharm 13:1800–1808 ArticleCASPubMed Google Scholar
Zhang S, Lu C, Zhang X, Li J, Jiang H (2016b) Targeted delivery of etoposide to cancer cells by folate-modified nanostructured lipid drug delivery system. Drug Deliv 23:1838–1845 ArticleCASPubMed Google Scholar
Zheng J, Wan Y, Elhissi A, Zhang Z, Sun X (2014) Targeted paclitaxel delivery to tumors using cleavable PEG-conjugated solid lipid nanoparticles. Pharm Res 31:2220–2233 ArticleCASPubMed Google Scholar
Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6:3491–3498 ArticleCASPubMedPubMed Central Google Scholar
Zhu Y, Cheng L, Cheng L, Huang F, Hu Q, Li L, Chen D (2014) Folate and TAT peptide co-modified liposomes exhibit receptor-dependent highly efficient intracellular transport of payload in vitro and in vivo. Pharm Res 31:3289–3330 ArticleCASPubMed Google Scholar