Structural studies of protein–nucleic acid interaction: the sources of sequence-specific binding | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)

References

Abdel-Meguid, S. S., Grindley, N. D. F., Smyth Templeton, N. & Steitz, T. A. (1984). Cleavage of the site-specific recombination protein γδ resolvase: the smaller of two fragments binds DNA specifically. Proc. natn. Acad. Sci. USA 81, 2001–2005.CrossRefGoogle Scholar

Abdel-Meguid, S. S., Murthy, H. M. K. & Steitz, T. A. (1986). Preliminary X-ray diffraction studies of the putative catalytic domain of γδ resolvase from Escherichia coli. J. biol. Chem. 261, 15934–15935.CrossRefGoogle Scholar

Adler, K., Beyreuther, K., Fanning, E., Geisler, N., Gronenborn, B., Klemm, A., Müller-Hill, B., Pfahl, M., Schmitz, A. (1972). How Lac repressor binds to DNA. Nature 237, 322–326.CrossRefGoogle ScholarPubMed

Aggarwal, A. K., Rodgers, D. W., Drottar, M., Ptashne, M. & Harrison, S. C. (1988). Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science 242, 99–07.CrossRefGoogle ScholarPubMed

Aiba, H. (1983). Autoregulation of the Escherichia coli crp gene: CRP is a transcriptional repressor for its own gene. Cell 32, 141–149.CrossRefGoogle ScholarPubMed

Aiba, H., Fujimoto, S. & Ozaki, N. (1982). Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein. Nucl. Acids Res. 10, 1345.CrossRefGoogle ScholarPubMed

Aiba, H., Nakamura, T., Mitani, H. & Mori, H. (1985). Mutations that alter the allosteric nature of cAMP receptor protein of Escherichia coli. EMBO. J. 4, 3329–3332.CrossRefGoogle ScholarPubMed

Anderson, J., Ptashne, M. & Harrison, S. C. (1984). Co-crystals of the DNA-binding domain of phage 434 repressor and a synthetic phage 434 operator. Proc. natn. Acad. Sci. USA 81, 1307–1311.CrossRefGoogle Scholar

Anderson, J. E., Ptashne, M. & Harrison, S. C. (1985). A phage repressor-operator complex at 7 Å resolution. Nature 316, 596–601.CrossRefGoogle ScholarPubMed

Anderson, J. E., Ptashne, M. & Harrison, S. C. (1987). Structure of the repressor-operator complex of bacteriophage 434. Nature 326, 846–852.CrossRefGoogle ScholarPubMed

Anderson, W. F., Cygler, M., Vandonselaar, M., Ohlendorf, D. H., Matthews, B. W., Kim, J. & Takeda, Y. (1983). Crystallographic data for complexes of the cro repressor with DNA. J. molec. Biol. 168, 903–906.CrossRefGoogle ScholarPubMed

Anderson, W. F., Ohlendorf, D. H., Takeda, Y. & Matthews, B. W. (1981). Structure of the cro repressor from bacteriophage λ and its interaction with DNA. Nature 290, 754–758.CrossRefGoogle ScholarPubMed

Anderson, W. F., Takeda, Y., Ohlendorf, D. H. & Matthews, B. W. (1982). Proposed α-helical super-secondary structure associated with protein-DNA recognition. J. molec. Biol. 159, 745–751.CrossRefGoogle ScholarPubMed

Benson, N., Sugiono, P. & Yonderian, P. (1988). DNA sequence determinants of λ repressor binding in vivo. Genetics 118, 21–29.CrossRefGoogle ScholarPubMed

Berg, J. M. (1988). Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. Proc. natn. Acad. Sci. USA 85, 99–102.CrossRefGoogle ScholarPubMed

Besse, M., Von Wilcken-Bergmann, B. & Müller-Hill, B. (1986). Synthetic lac operator mediates repression through lac repressor when introduced upstream and downstram from lac repressor. EMBO J. 5, 1377–1381.CrossRefGoogle Scholar

Bhat, T. N., Blow, D. M. & Brick, P. (1982). Tyrosyl-tRNA synthetase forms a mononucleotide-binding fold. J. molec. Biol. 158, 699–709.CrossRefGoogle ScholarPubMed

Boelens, R., Scheek, R. M., Van Boom, J. H. & Kaptein, R. (1987). Complex of lac repressor headpiece with a 14 base-pair lac operator fragment studied by two-dimensional nuclear magnetic resonance. J. molec. Biol. 193, 213–216.CrossRefGoogle ScholarPubMed

Bogenhagen, D. F., Sakonju, S. & Brown, D. D. (1980). A control region in the centre of the 5S RNA gene directs specific initiation of transcription: the 3′ border of the region. Cell 19, 27–35.CrossRefGoogle ScholarPubMed

Brayer, G. D. & Mcpherson, A. (1983). Refined structure of the gene 5 DNA binding protein from bacteriophage fd. J. molec. Biol. 169, 565–596.CrossRefGoogle ScholarPubMed

Brennan, R. G., Takeda, Y., Kim, J., Anderson, W. F. & Matthews, B. W. (1986). Crystallization of a complex of cro repressor with a 17 base-pair operator. J. molec. Biol. 188, 115–118.CrossRefGoogle ScholarPubMed

Brick, P., Bhat, T. N. & Blow, D. M. (1989). Structure of tyrosyl-tRNA synthetase refined at 2·3 Å resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J. molec. Biol, in press.CrossRefGoogle Scholar

Bricogne, G. (1976). Methods and programs for direct-space exploitation of geometric redundancies. Acta Crystallogr. A32, 832.CrossRefGoogle Scholar

Brunie, S., Mellot, P., Zelwer, C., Risler, J.-L., Blanquet, S. & Fayat, G. (1987). Structure-activity relationships of methionyl-tRNA synthetase: graphics modelling and genetic engineering. J. molec. Graphics 5, 18–28.CrossRefGoogle Scholar

Brutlag, D., Atkinson, M. R., Setlow, P. & Kornberg, A. (1969). An active fragment of DNA polymerase produced by proteolytic cleavage. Biochem. biophys. Res. Comm. 37, 982–989.CrossRefGoogle ScholarPubMed

Brutlag, D. & Kornberg, A. (1972). Enzymatic synthesis of doexyribonucleic acid. J. biol. Chem. 247, 241–248.CrossRefGoogle Scholar

Burlingame, R. W., Love, W. E., Wang, B.-C., Hamlin, R., Xuong, N. H. & Moudrianankis, E. N. (1985). Crystallographic structure of the octameric histone core of the nucleosome at a resolution of 3·3 Å. Science 228, 546–553.CrossRefGoogle Scholar

Carter, C. W. & Kraut, J. (1974). A proposed model for interaction of polypeptides with RNA. Proc. natn. Acad. Sci. USA 71, 283–287.CrossRefGoogle ScholarPubMed

Charlier, B. M., Maurizot, J. C. & Zaccui, G. (1980). Neutron scattering studies of lac repressor. Nature (London) 286, 423–425.CrossRefGoogle ScholarPubMed

Church, G. M., Sussman, J. L. & Kim, S.-H. (1977). Secondary structure complementarity between DNA and proteins. Proc. natn. Acad. Sci. USA 74, 1458–1462.CrossRefGoogle Scholar

Coll, M., Frederick, C. A., Wang, A. H.-J. & Rich, A. (1987). A bifurcated hydrogen-bonded conformation in the d(AT) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin. Proc. natn. Acad. Sci. USA 84, 8385–8389.CrossRefGoogle Scholar

Cossart, P. & Gicquel-Sanzey, B. (1982). Cloning and sequence of the crp gene of Escherichia coli K12. Nucl. Acids Res. 10, 1363–1378.CrossRefGoogle Scholar

La Cour, T. F. M., Nyborg, J., Thirup, S. & Clark, B. F. C. (1985). Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studies by X-ray crystallography. EMBO J. 4, 2385–2388.CrossRefGoogle Scholar

De Crombrugghe, B., Busby, S. & Buc, H. (1984). Cyclic AMP receptor protein: role in transcription activation. Science 224, 831–838.CrossRefGoogle ScholarPubMed

Delarue, M. & Moras, D. (1989). RNA structure. In Nucleic Acids and Molecular biology, vol. 3 (ed. Eckstein, F. and Lilley, D. M. J.), pp. 182–196. Springer-Verlag.CrossRefGoogle Scholar

Derbyshire, V., Freemont, P. S., Sanderson, M. R., Beese, L. S., Friedman, J. M., Steitz, T. A. & Joyce, C. M. (1988). Genetic and crystallographic studies of the 3′,5′-exonucleolytic site of DNA polymerase I. Science 240, 199–201.CrossRefGoogle ScholarPubMed

Diakun, G. P., Fairall, L. & Klug, A. (1986). EXAFS study of the zinc-binding sites in the protein transcription factor IIIA. Nature 324, 698–699.CrossRefGoogle ScholarPubMed

Dickerson, R. E. (1983). Base sequence and helix structure variation in B- and A-DNA. J. molec. Biol. 166, 419–441.CrossRefGoogle Scholar

Dickerson, R. E. & Drew, H. R. (1981). Structure of a B-DNA dodecamer. II. Influence of base sequence on helix structure. J. molec. Biol. 149, 761–786.CrossRefGoogle ScholarPubMed

Dickson, R. C., Abelson, J., Barnes, W. M. & Reznikoff, W. S. (1975). Genetic regulation: the lac control region. Science 187, 27–35.CrossRefGoogle ScholarPubMed

Digabriele, A. D., Sanderson, M. R. & Steitz, T. A. (1989). Crystal lattice packing is important in determining the bend of a DNA dodecamer containing an adenine tract. Proc. natn. Acad. Sci. USA 85, 1816–1820.CrossRefGoogle Scholar

Drew, H. R. & Travers, A. A. (1984). DNA structural variations in the E. coli tyr T promoter. Cell 37, 491–502.CrossRefGoogle Scholar

Ebright, R. H., Cossart, P., Gicquel-Sanzey, B. & Beckwith, J. (1984). Mutations that alter the DNA sequence specificity of the catabolite gene activator protein of E. coli. Nature 311, 232–235.CrossRefGoogle ScholarPubMed

Ebright, R. H., Kolb, A., Buc, H., Kunkel, T. A., Krakow, J. S. & Beckwith, J. (1987). Role of glutamic acid-181 in DNA-sequence recognition by the catabolite gene activator protein (CAP) of Escherichia coli: altered DNA-sequence-recognition properties of [Val181]CAP and [Leu181]CAP. Proc. natn. Acad. Sci. USA 84, 6083–6087.CrossRefGoogle ScholarPubMed

Ebright, R. H., Le Grice, S. F. J., Miller, J. P. & Krakow, J. S. (1985). Analogs of cyclic AMP that elicit the biochemically defined conformational change in catabolite gene activator protein (CAP) but do not stimulate binding to DNA. J. molec. Biol. 182, 92–107.CrossRefGoogle Scholar

Fersht, A. (1985). Enzyme Structure and Mechanism, 2nd ed.New York: W. H. Freeman & Co.Google Scholar

Files, J. G. & Weber, K. (1976). Limited proteolytic digestion of lac repressor by trypsin. J. biol. Chem. 251, 3386–3391.CrossRefGoogle ScholarPubMed

Frederick, C. A., Grable, J., Melia, M., Samudzi, C., Jen-Jacobson, L., Wang, B.-C., Greene, P. J., Boyer, H. W. & Rosenberg, J. M. (1984). Kinked DNA in crystalline complex with EcoRI endonuclease. Nature 309, 327–331.CrossRefGoogle ScholarPubMed

Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R. & Steitz, T. A. (1988). Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. natn. Acad. Sci. USA 85, 8924–8928.CrossRefGoogle ScholarPubMed

Freemont, P. S., Ollis, D. L., Steitz, T. A. & Joyce, C. M. (1986). A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity. Proteins 1, 66–73.CrossRefGoogle ScholarPubMed

Garges, S. & Adhya, S. (1985). Sites of allosteric shift in the structure of the cyclic AMP receptor protein. Cell 41, 745–751.CrossRefGoogle ScholarPubMed

Gartenberg, M. R. & Crothers, D. M. (1988). DNA sequence determinants of CAP-induced bending and protein binding affinity. Nature 333, 824–829.CrossRefGoogle ScholarPubMed

Gent, M. E., Gronenborn, A. M., Davies, T. W. & Clore, G. M. (1987). Biochem. J. 242, 645–653.CrossRefGoogle Scholar

Geisler, N. & Weber, K. (1977). Isolation of the amino-terminal fragment of lactose repressor necessary for DNA binding Biochemistry 16, 938–943.CrossRefGoogle ScholarPubMed

Gronenborn, A. M. & Clore, G. M. (1982). Proton nuclear magnetic resonance studies on cyclic nucleotide binding to the Escherichia coli adenosine cyclic 3′,5′-phosphate receptor protein. Biochemistry 21, 4040–4048.CrossRefGoogle Scholar

Gronenborn, A. M., Nermut, M. V., Eason, P. & Clore, G. M. (1984). Visualization of cAMP receptor protein-induced DNA kinking by electron microscopy. J. molec. Biol. 179, 751–575.CrossRefGoogle ScholarPubMed

Hatfull, G. F. & Grindley, N. D. F. (1988). Genetic Recombination (ed. Smith, G. and Kucharlapati, R.), pp. 357–564. Washington, D.C.: American Society for Microbiology.Google Scholar

Hatfull, G. F., Sanderson, M. R., Freemont, P. S., Raccuia, P. R., Grindley, N. D. F. & Steitz, T. A. (1989). Preparation of heavy atom derivatives using site-directed mutagenesis: introduction of cysteine residues into γδ resolvase. J. molec. Biol. 208, 661–667.CrossRefGoogle Scholar

Hecht, M. H., Nelson, H. C. M. & Sauer, R. T. (1983). Mutations in λ repressor's amino-terminal domain: implications for protein stability and DNA binding. Proc. natn. Acad. Sci. USA 80, 2676–2680.CrossRefGoogle ScholarPubMed

Hochschild, A. & Ptashne, M. (1986 a). Cooperative binding of λ repressors to sites separated by integral turns of the DNA helix. Cell 44, 681–687.CrossRefGoogle ScholarPubMed

Hochschild, A. & Ptashne, M. (1986 b). Homologous interactions of λ repressor and λ cro with the λ operator. Cell 44, 925–933.CrossRefGoogle ScholarPubMed

Hol, W. G. S. (1985). The role of the α-helix dipole in protein function and structure. Prog. Biophys. molec. Biol. 45, 149–195.CrossRefGoogle ScholarPubMed

Hooper, M. L., Russell, R. L. & Smith, J. D. (1972). Mischarging in mutant tyrosine transfer RNAs. FEBS Lett. 22, 149.CrossRefGoogle ScholarPubMed

Irwin, N. & Ptashne, M. (1987). Mutants of the catabolite activator protein of Escherichia coli that are specifically deficient in the gene-activation function. Proc. natn. Acad. Sci. USA 84, 8315–8319.CrossRefGoogle ScholarPubMed

Johnson, L. N. & Phillips, D. C. (1965). Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6 Å resolution. Nature 206, 760–763.CrossRefGoogle Scholar

Jordan, R. S. & Pabo, C. O. (1988). Structure of the λ complex at 2·5 Å resolution: details of the repressor-operator interactions. Science 242, 893–899.CrossRefGoogle ScholarPubMed

Jordan, S. R., Whitcombe, T. V., Berg, J. M. & Pabo, C. O. (1985). Systematic variation in DNA length yields highly ordered repressor-operator co-crystals. Science 230, 1383.CrossRefGoogle Scholar

Joyce, C. M., Ollis, D. L., Rush, J., Steitz, T. A., Konigsberg, W. H. & Grindley, N. D. F. (1986). In: Protein Structure, Folding and Design, UCLA Symposia on Molecular and Cellular Biology (ed. Oxender, D.), pp. 197–205. New York: Liss.Google Scholar

Joyce, C. M. & Steitz, T. A. (1987). DNA polymerase. I. From crystal structure to function via genetics. Trends Biochem. Sci. 12, 288–292.CrossRefGoogle Scholar

Jurnak, F. (1985). Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science 230, 32–36.CrossRefGoogle ScholarPubMed

Kaptain, R., Zuiderweg, E. R. P., Scheek, R. M., Boelens, R. & Van Gunsterne, W. F. (1985). A protein structure from nuclear magnetic resonance data. J. molec. Biol. 182, 179–182.CrossRefGoogle Scholar

Kennard, O. & Hunter, W. N. (1989). Oligonucleotide structure: a decade of results from single crystal X-ray diffraction studies. Q. Reviews of Biophys. 22, 327–379.CrossRefGoogle ScholarPubMed

Kim, R., Modrich, P. & Kim, S.-H. (1984). ‘Interactive’ recognition in _Eco_R I restriction enzyme-DNA complex. Nucl. Acids Res. 12, 7285–7292.CrossRefGoogle Scholar

Kim, S. H., Suddath, F. L., Quigley, G. J., McPherson, A., Sussman, J. L., Wang, A. H. J., Seeman, N. C. & Rich, A. (1974). Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185, 435–440.CrossRefGoogle ScholarPubMed

Klenow, H. & Henningson, I. (1970). Selective elimination of the exonuclease activity of the DNA polymerase from E. coli B by a limited proteolysis. Proc. natn. Acad. Sci. USA 65, 168.CrossRefGoogle Scholar

Klug, A., Jack, A., Viswamitra, M. A., Kennard, O., Shakked, Z. & Steitz, T. A. (1979). A hypothesis on a specific sequence-dependent conformation of DNA and its relation to the binding of the _lac_-repressor protein. J. molec. Biol. 131, 669–680.CrossRefGoogle Scholar

Koudelka, G. B., Harrison, S. C. & Ptashne, M. (1987). Effect of non-contacted bases on the affinity of 434 operator for 434 repressor and cro. Nature 326, 886–888.CrossRefGoogle ScholarPubMed

Koudelka, G. B., Harbury, P., Harrison, S. C. & Ptashne, M. (1988). DNA twisting and the affinity of bacteriophage 434 operator for bacteriophage 434 repressor. Proc. natn. Acad. Sci. USA 85, 4633–4637.CrossRefGoogle ScholarPubMed

Kramer, H., Niemoller, M., Ampuyal, M., Revet, B., Von Wilcken-Bergmann, B. & Müller-Hill, B. (1987). lac repressor forms loops with linear DNA carrying two suitably spaced lac operators EMBO J. 6, 1481–1491.CrossRefGoogle ScholarPubMed

Landschultz, W. H., Johnson, P. R. & Mcknight, S. L. (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764.CrossRefGoogle Scholar

Laughon, A. & Scott, M. P. (1984). Sequence of a Drosophila segmentation gene; protein structure homology with DNA-binding proteins. Nature 310, 25–31.CrossRefGoogle ScholarPubMed

Lawson, C. L., Zhang, R.-G., Schevitz, R. W., Otwinowski, Z., Joachimiak, A. & Sigler, P. B. (1988). Flexibility of the DNA-binding domains of trp repressor. Proteins 3, 18–31.CrossRefGoogle ScholarPubMed

Leahy, M. C. (1982). The binding of lac repressor to DNA substituted with nucleotide analogs. Ph.D. thesis, Yale University, New Haven, Connecticut.Google Scholar

Lee, M. S., Gippert, G. P., Soman, K. V., Case, D. A., Wright, P. E. (1989). Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 245, 635–637.CrossRefGoogle ScholarPubMed

Lehming, N., Sartorius, J., Niemöller, M., Genenger, G., Wilcken-Bergmann, B.V. & Müller-Hill, B. (1987). The interaction of the recognition helix of lac repressor with lac operator. EMBO J. 6, 3145–3153.CrossRefGoogle ScholarPubMed

Lewis, M., Wang, J. & Pabo, C. (1985). Structure of the operator binding domain of lambda repressor. In: Biological Macromolecules and Assemblies, vol. 2 (ed. Jurnak, F. A. and McPherson, A.), New York: John Wiley & Sons.Google Scholar

Liu-Johnson, H.-N., Gartenberg, M. R. & Grothers, D. M. (1986). The DNA binding domain and bending angle of E. coli CAP protein. Cell 47, 995–1005.CrossRefGoogle ScholarPubMed

Lomonossoff, G. P., Butler, P. J. G. & Klug, A. (1981). Sequence-dependent variation in the conformation of DNA. J. molec. Biol. 149, 745–760.CrossRefGoogle ScholarPubMed

Majors, J. (1977). Dissertation (Harvard University, Cambridge, MA).Google Scholar

McCall, M., Brown, T., Hunter, W. N. & Kennard, O. (1986). The crystal structure of d(GGATGGGAG) form an essential part of the binding site for TFIIIA. Nature 332, 661–664.CrossRefGoogle Scholar

Martin, K., Huo, L. & Schleif, R. F. (1986). The DNA loop model for ara repression: AraC protein occupies the proposed loop sites in vivo and repression-negative mutations lie in these same sites. Proc. natn. Acad. Sci. USA 83, 3654–3658.CrossRefGoogle ScholarPubMed

Matthews, B. W., Ohlendorf, D. H., Anderson, W. F. & Takeda, Y. (1982). Structure of the DNA-binding region of lac repressor inferred from its homology with cro repressor. Proc. natn. Acad. Sci. USA 79, 1428.CrossRefGoogle ScholarPubMed

McClarin, J. A., Frederick, C. A., Wang, B.-C., Greene, P., Boyer, H. W., Grable, J. & Rosenberg, J. M. (1986). Structure of the DNA-_ECo_R I endonuclease recognition complex at 3 Å resolution. Science 234, 1526–1541.CrossRefGoogle Scholar

Mckay, D. B., Pickover, C. A. & Steitz, T. A. (1982 a). E. coli lac repressor is elongated with its DNA binding domains located at both ends. J. molec. Biol. 156, 175–183.CrossRefGoogle ScholarPubMed

Mckay, D. B. & Steitz, T. A. (1981). Structure of catabolite gene activator protein at 2·9 Å resolution suggests binding to left-handed B-DNA. Nature 290, 744–749.CrossRefGoogle ScholarPubMed

McKay, D. B., Weber, I. T. & Steitz, T. A. (1982 b). Structure of catabolite gene activator protein at 2·9 Å resolution: Incorporation of amino-acid sequence and interactions with c-AMP. J. biol. Chem. 257, 9518–9524.CrossRefGoogle Scholar

Miller, J. H. (1978). The lacI gene: its role in lac operon control and its use as a genetic system. In The Operon (ed. Miller, J. H. and Reznikoff, W. S.). Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar

Miller, J., McLachlan, A. D. & Klug, A. (1985). Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4, 1609–1614.CrossRefGoogle ScholarPubMed

Moore, S. (1981). The Enzymes, 3rd edn, vol. 14 (ed. Boyer, P. D.), pp. 281–296. New York: Academic Press.Google Scholar

Moras, D., Comarmond, M. B., Fischer, J., Theirry, J. C., Ebel, J. P. & Giegé, R. (1980). Crystal structure of tRNAAsp. Nature 288, 669–674.CrossRefGoogle ScholarPubMed

Müller-Hill, B. (1983). Sequence homology between lac and gal repressors and three sugar-binding periplasmic proteins. Nature 302, 163–164.CrossRefGoogle ScholarPubMed

Nelson, H. C. M., Finch, J. T., Luisi, B. F. & Klug, A. (1987). The structure of an oligo(dA)·oligo(dT) tract and its biological implications. Nature 330, 221–226.CrossRefGoogle ScholarPubMed

Nelson, H. C. M. & Sauer, R. T. (1986). Interaction of mutant λ repressors with operator and non-operator DNA. J. molec. Biol. 192, 22–38.CrossRefGoogle ScholarPubMed

Oefner, C. & Suck, D. (1986). Crystallographic refinement and structure of DNase I at 2 Å resolution. J. molec. Biol. 192, 605–632.CrossRefGoogle ScholarPubMed

Ogata, R. T. & Gilbert, W. (1979). DNA-binding site of lac repressor probed by dimethylsulfate methylation of lac operator. J. molec. Biol. 132, 709–728.CrossRefGoogle ScholarPubMed

Ohlendorf, D. H., Anderson, W. F., Fisher, R. G., Takeda, Y. & Matthews, B. W. (1982). The molecular basis of DNA-protein recognition inferred from the structure of cro repressor. Nature 298, 718–723.CrossRefGoogle ScholarPubMed

Ohlendorf, D. H., Anderson, W. F., Lewis, M., Pabo, C. O. & Matthews, B. W. (1983). Comparison of the structures of cro and λ repressor protein from bacteriophage λ. J. molec. Biol. 169, 757–769.CrossRefGoogle ScholarPubMed

Ohlendorf, D. H., Anderson, W. F., Takeda, Y. & Matthews, B. W. (1983). High resolution structural studies of cro repressor protein and implications for DNA recognition. J. biomol. Struct. Design 1, 553–563.CrossRefGoogle ScholarPubMed

Ohlendorf, D. H. & Matthews, B. W. (1983). Structural studies of protein-nucleic acid interactions. Ann. Rev. Biophys. Bioeng. 12, 259–284.CrossRefGoogle ScholarPubMed

Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G. & Steitz, T. A. (1985). Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313, 762–766.CrossRefGoogle ScholarPubMed

O'Shea, E. K., Ruttkowski, R. & Kim, P. S. (1989). Evidence that the leucine zipper is a coiled coil. Science 243, 538–542.CrossRefGoogle ScholarPubMed

Otwinowski, Z., Schevitz, R. W., Zhang, R.-G., Lawson, C. L., Joachimiak, A., Marmostein, R. Q., Luisi, B. F. & Sigler, P. B. (1988). Crystal structure of trp repressor/operator complex at atomic resolution. Nature 335, 321–329.CrossRefGoogle ScholarPubMed

Pabo, C. O. (1983). DNA-protein interactions. In Proceedings of The Robert A. Welch Foundation Conferences on Chemical Research, XXVII, Stereospecificity in Chemistry and Biochemistry, ch. 7, pp. 223–255. Houston, Texas.Google Scholar

Pabo, C. O., Krovatin, W., Jeffrey, A. & Sauer, R. T. (1982). The N-terminal arms of λ repressor wrap around the operator DNA. Nature 298, 441–443.CrossRefGoogle ScholarPubMed

Pabo, C. O. & Lewis, M. (1982). The operator-binding domain of λ repressor: structure and DNA recognition. Nature 298, 443–447.CrossRefGoogle ScholarPubMed

Pabo, C. O., Sauer, R. T., Sturtevant, J. M. & Ptashne, M. (1979). The λ repressor contains two domains. Proc. natn. Acad. Sci. USA 76, 1608–1612.CrossRefGoogle ScholarPubMed

Parraga, G., Horvath, S. J., Eisen, A., Taylor, W. E., Hood, L., Young, E. T. & Klevit, R. E. (1988). Zinc-dependent structure of a single-finger domain of yeast ADR1. Science 241, 1489–1492.CrossRefGoogle ScholarPubMed

Perona, J. J., Swanson, R. N., Rould, M. A., Steitz, T. A. & Söll, D. (1989). Structural basis for misaminoacylation by mutant E. coli glutaminyl-tRNA synthetase enzymes. Science 246, 1152–1154.CrossRefGoogle ScholarPubMed

Pflugrath, J. W. & Quiocho, F. A. (1985). Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature 314, 257.CrossRefGoogle ScholarPubMed

Phillips, S. E. V., Manfield, I., Parsons, I., Davidson, B. E., Rafferty, J. B., Somers, W. S., Margarita, D., Cohen, G. N., Saint-Girons, I. & Stockley, P. S. (1989). Cooperative tandem binding of met repressor of Escherichia coli. Nature 341, 711–715.CrossRefGoogle ScholarPubMed

Porschke, D., Hillen, W. & Takahashi, M. (1984). The change of DNA structure by specific binding of the cAMP receptor protein from rotation diffusion and dichroism measurements. EMBO J. 3, 2873–2878.CrossRefGoogle ScholarPubMed

Price, P. A. (1975). The essential role of Ca2+ in the activity of bovine pancreatic deoxyribonuclease. J. biol. Chem. 250, 1981–1986.CrossRefGoogle ScholarPubMed

Ptashne, M. (1986). A Genetic Switch. Cambridge, MA: Cell Press.Google Scholar

Qian, Y. Q., Billeter, M., Otting, G., Müller, M., Gehring, W. J. & Wüthrich, K. (1989). The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: Comparison with prokaryotic repressors. Cell 59, 573–580.CrossRefGoogle ScholarPubMed

Que, B. G., Downey, K. M. & So, A. (1978). Mechanism of selective inhibition of 3′ to 5′ exonuclease activity of E. coli DNA polymerase I by nucleoside 5′-monophosphates. Biochemistry 17, 1603.CrossRefGoogle ScholarPubMed

Rafferty, J. B., Somers, W. S., St.-Girons, I. & Phillips, S. E. V. (1989). Three-dimensional crystal structures of E. coli met repressor with and without corepressor. Nature 341, 705–710.CrossRefGoogle ScholarPubMed

Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. (1984). Structure a of the nucleosome core particle at 7 Å resolution. Nature 311, 532–537.CrossRefGoogle ScholarPubMed

Richmond, T. J. & Steitz, T. A. (1976). Protein-DNA interaction investigated by binding E. coli lac repressor protein to poly[d(A·U-HgX)]. J. molec. Biol. 103, 25–38.CrossRefGoogle Scholar

Robertus, J. D., Ladner, J. E., Finch, J. T., Rhodes, D., Brown, R. S., Clark, B. F. C. & Klug, A. (1974). Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250, 546–551.CrossRefGoogle ScholarPubMed

Rossman, M. G., Liljas, A., Branden, C.-I. & Banaszak, L. J. (1975). Evolutionary and structural relationships among dehydrogenases. In The Enzymes, vol II (ed. P. Boyer), pp. 61–102.CrossRefGoogle Scholar

Rould, M. A., Perona, J. J., Söll, D. & Steitz, T. A. (1989). Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2·8 Å resolution: implications for tRNA discrimination. Science 246, 1135–1142.CrossRefGoogle Scholar

Rouvière-Yaniv, J. & Yaniv, M. (1979). E. coli DNA binding protein HU forms nucleosome-like structure with circular double-stranded DNA. Cell 17, 265–274.CrossRefGoogle Scholar

Satchwell, S. C., Drew, H. R., Travers, A. A. (1986). Sequence periodicities in chicken nucleosome core DNA. J. molec. Biol. 191, 659–675.CrossRefGoogle ScholarPubMed

Sauer, R. T., Jordan, S. R., Pabo, C. O. (1990). λ repressor: A model system for understanding protein-DNA interactions and protein stability. Adv. Prot. Chem. (in the press).CrossRefGoogle Scholar

Sauer, R. T., Pabo, C. O., Meyer, B. J., Ptashne, M. & Backman, K. C. (1979). Regulatory functions of the λ repressor reside in the amino-terminal domain. Nature 279, 396–400.CrossRefGoogle ScholarPubMed

Sauer, R. T., Yocum, R. R., Doolittle, R. F., Lewis, M. & Pabo, C. O. (1982). Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature 298, 447–451.CrossRefGoogle ScholarPubMed

Scheffler, I. E., Elson, E. L. & Baldwin, R. L. (1968). Helix formation by dAT oligomers. I. Hairpin and straight-chain helices. J. molec. Biol. 36, 291–304.CrossRefGoogle ScholarPubMed

Schevitz, R. W., Otwinowski, Z., Joanchimiak, A., Lawson, C. L. & Sigler, P. B. (1985). The three-dimensional structure of trp repressor. Nature 317, 782–786.CrossRefGoogle ScholarPubMed

Scholübbers, H.-G., Van Knippenberg, P. H., Baraniak, J., Stec, W. J., Morr, M. & Jastorff, B. (1983). Investigations of stimulation of lac transcription in vivo in Escherichia coli by cAMP analogues. Eur. J. Biochem. 138, 101–109.CrossRefGoogle Scholar

Schulman, L. H. & Abelson, J. (1988). Recent excitement in understanding transfer RNA identity. Science 240, 1591–1592.CrossRefGoogle ScholarPubMed

Schulman, L. H. & Pelka, H. (1985). In vitro conversion of a methionine to a glutamine-acceptor tRNA. Biochemistry 24, 7309–7314.CrossRefGoogle ScholarPubMed

Schultz, S. C., Shields, G. C. & Steitz, T. A. (1990). Crystallization of E. coli CAP with its operator DNA: the use of modular DNA. J. molec. Biol (in the press).Google Scholar

Seeman, N. C., Rosenberg, J. M., Rich, A. (1976). Sequence-specific recognition of double helical nucleic acids by proteins. Proc. natn. Acad. Sci. USA 73, 804–808.CrossRefGoogle ScholarPubMed

Seong, B. L., Lee, C.-P. & Rajbhandary, U. L. (1989). Supression of amber codons in vivo as evidence that mutants derived fro Escherichia coli initiator tRNA can act at the step of elongation in protein synthesis. J. biol. Chem. 264, 6504.CrossRefGoogle Scholar

Shepherd, J. C. W., Mcginnis, W., Carrasco, A. E., De Roberts, E. M., & Gehring, W. J. (1984). Fly and frog homoeo domains show homologies with yeast mating type regulatory proteins. Nature 310, 5972, 70–71.CrossRefGoogle ScholarPubMed

Shimura, Y., Aono, H., Ozeki, H., Sarabhai, A., Lamform, H. & Abelson, J. (1972). Mutant tyrosine tRNA of altered amino acid specificity. FEBS Lett. 22, 144–148.CrossRefGoogle ScholarPubMed

Simpson, R. B. (1980). Interaction of the cAMP receptor protein with the lac promoter. Nucl. Acids Res. 8, 759.Google ScholarPubMed

Steitz, T. A., Beese, L., Freemont, P. S., Friedman, J. & Sanderson, M. R. (1987). Structural studies of Klenow fragment: an enzyme with two active sites. Cold Spring Harbor Symposia on Quantitative Biology, ch. 52, pp. 465–471. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.Google Scholar

Steitz, T. A., Ohlendorf, D. H., McKay, D. B., Anderson, W. F. & Matthews, B. W. (1982). Structural similarity in the DNA binding domains of catabolite gene activator and cro repressor proteins. Proc. natn. Acad. Sci. USA 79, 3097–3100.CrossRefGoogle ScholarPubMed

Steitz, T. A., Richmond, T. J., Wise, D. & Engelman, D. M. (1974). The lac repressor protein: molecular shape, subunit structure and proposed model for operator interaction based on structural studies of micro-crystals. Proc. natn. Acad. Sci. USA 72, 53.Google Scholar

Steitz, T. A., Stenkamp, R. E., Geisler, N., Weber, K. & Finch, J. (1979). X-ray and electron microscopic studies of crystals of core lac repressor protein. In Biomolecular Structure, Conformation, Function and Evolution (ed. Srinivasan, R.)., Oxford: Pergamon Press.Google Scholar

Steitz, T. A. & Weber, I. T. (1985). Structure of catabolite gene activator protein. In Biological Macromolecules and Assemblies, 2nd edn (ed. McPherson, A. and Jurnak, F.), pp. 290–321. New York: John Wiley.Google Scholar

Steitz, T. A., Weber, I. T., Ollis, D. & Brick, P. (1983). Crystallographic studies of protein-nucleic acid interaction: catabolite gene activator protein and the large fragment of DNA polymerase I. J. biomolec. Struct. Dyn. 1, 1023–1037.CrossRefGoogle ScholarPubMed

Suck, D., Lahm, A. & Oefner, C. (1988). Structure refined to 2 Å of a nickel DNA octanucleotide complex with DNase I. Nature 332, 6163, 465–468.CrossRefGoogle Scholar

Suck, D. & Oefner, C.(1986). Structure of DNase I at 2·0 Å resolution suggests a mechanism for binding to and cutting DNA. Nature 321, 620–625.CrossRefGoogle ScholarPubMed

Suck, D., Oefner, C. & Kabsch, W. (1984). Three-dimensional structure of bovine pancreatic DNase I at 2·5 Å resolution. EMBO J. 3, 2423–2430.CrossRefGoogle ScholarPubMed

Sung, M. T. & Dixon, G. H. (1970). Modification of histones during spermiogenesis in trout: a molecular mechanism of altering histone binding to DNA. Proc. natn. Acad. Sci. USA 67, 1616–1623.CrossRefGoogle Scholar

Takeda, Y., Ohlendorf, D. H., Anderson, W. F. & Matthews, B. W. (1983). DNA-binding proteins. Science 221, 1020–1026.CrossRefGoogle ScholarPubMed

Tanaka, I., Appelt, K., Dij, K. L., White, S. W. & Wilson, K. S. (1984). 3 Å resolution structure of a protein with histone-like properties in prokaryotes. Nature 310, 376–381.CrossRefGoogle ScholarPubMed

Vyas, N. K., Vyas, M. N., & Quiocho, F. A. (1988). Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science 242, 1290–1295.CrossRefGoogle ScholarPubMed

Wang, B.-C. (1987). Resolution of phase ambiguity in macromolecular crystallography. Methods in Enzymol. 115, 90–111.CrossRefGoogle Scholar

Warrant, R. W. & Kim, S. -H. (1978). α-Helix-double helix interaction shown in the structure of a protamine-transfer RNA complex and a nucleoprotamine model. Nature 271, 130–135.CrossRefGoogle Scholar

Warwicker, J., Engelman, B. P. & Steitz, T. A. (1987). Electrostatic calculations and model building suggest that DNA bound to CAP is sharply bent. Proteins 2, 283–289.CrossRefGoogle ScholarPubMed

Weber, K. & Files, J. G. (1976). Limited proteolytic digestion of lac repressor by trypsin. J. biol. Chem. 251, 3386–3391.Google Scholar

Weber, I. T. & Steitz, T. Q. (1984). A model for non-specific binding of catabolite gene activator protein to DNA. Nucl. Acids Res. 12, 8475–8487.CrossRefGoogle Scholar

Weber, I. T. & Steitz, T. A. (1984). Model of specific complex between CAP and B-DNA suggested by electrostatic complementarity. Proc. natn. Acad. Sci. USA 81, 3973–3977.CrossRefGoogle ScholarPubMed

Weber, I. T. & Steitz, T. A. (1987). The structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2·5 Å resolution. J. molec. Biol. 198, 311–326.CrossRefGoogle ScholarPubMed

Weber, I. T., McKay, D. B. & Steitz, T. A. (1982 a). Two helix DNA binding motif of CAP found in lac repressor and gal repressor Nucl. Acids Res. 10, 5085–5102.CrossRefGoogle Scholar

Weber, I. T., Steitz, T. A., Bubis, J. & Taylor, S. S. (1987). Predicted structures of cAMP binding domains of type I and II regulatory subunits of cAMP-dependent protein kinase. Biochemistry 26, 343–351.CrossRefGoogle ScholarPubMed

Weber, I. T., Takio, K., Titani, K. & Steitz, T. A. (1982 b). The cAMP-binding domains of the regulatory subunit of cAMP-dependent protein kinase and the catabolite gene activator proton are homologous. Proc. natn. Acad. Sci. USA 79, 7679–7683.CrossRefGoogle Scholar

Weber, P. C., Ollis, D. L., Debrin, W. R., Abdel-Meguid, S. S. & Steitz, T. A. (1982 c). Crystallization of resolvase, a repressor which also catalyzes site-specific DNA recombination. J. biol. Chem. 157, 689–690.Google ScholarPubMed

Wharton, R. (1985). Thesis, Harvard University, Cambridge, MA.Google Scholar

Wharton, R. P. & Ptashne, M. (1985). Changing the binding specificity of a repressor by redesigning an α-helix. Nature 316, 601–605.CrossRefGoogle ScholarPubMed

Wharton, R. P., Brown, E. L. & Ptashne, M. (1984). Substituting an α-helix switches the sequence-specific DNA interactions of a repressor. Cell 38, 361–369.CrossRefGoogle ScholarPubMed

Wolberger, C., Dong, Y., Ptashne, M. & Harrison, S. C. (1988). Structure of a phage 434 cro/DNA complex. Nature 335, 789–795.CrossRefGoogle ScholarPubMed

Woo, N. H., Roe, B. A. & Rich, A. (1980). Three-dimensional structure of Escherichia coli initiator tRNAf_Met_. Nature 286, 346–351.CrossRefGoogle ScholarPubMed

Woodbury, C. P., Hagenbüchle, O. & Von Hippel, P. H. (1980). DNA site recognition and reduced specificity of the Ecor I endonuclease. J. biol. Chem. 255, 11534–11546.CrossRefGoogle Scholar

Wu, H. & Crothers, D. M. (1984). The locus of sequence-directed and protein-induced DNA bending. Nature 308, 509–513.CrossRefGoogle ScholarPubMed

Yang, C. -C. & Nash, H. W. (1989). The interaction of E. coli IHF protein with its specific-binding sites. Cell 57, 869–880.CrossRefGoogle ScholarPubMed

Yaniv, M., Folk, W., Berg, P. & Soll, L. (1974). A single mutational modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG. J. molec. Biol. 86, 245–260.CrossRefGoogle ScholarPubMed

Yarus, M., Knowlton, R. & Soll, L. (1977). Aminoacylation of the ambivalent Su + 7 amber suppressor tRNA. In Nucleic Acid-Protein Recognition (ed. Vogel, H. J.) pp. 391–409. New York: Academic Press.CrossRefGoogle Scholar

Yoon, C., Prive, G. G., Goodsell, D. S. & Dickerson, R. E. (1988). Structure of an alternating-B DNA helix and its relationship to A-tract DNA. Proc. natn. Acad. Sci. USA 85, 6332–6336.CrossRefGoogle ScholarPubMed

Young, T. -S., Kim, S.-H., Modrich, P., Seth, A. & Jay, E. (1981). Preliminary X-ray diffraction studies of _Eco_R I restriction endonuclease-DNA complex. J. molec. Biol. 145, 607–610.CrossRefGoogle Scholar

Zelwer, C., Risler, J. L. & Brunie, S. (1982). Crystal structure of Escherichia coli methionyl-tRNA synthetase at 2·5 Å resolution. J. molec. Biol. 115, 63–81.CrossRefGoogle Scholar

Zhang, R. -G., Joachimiak, A., Lawson, C. L., Schevitz, R. W., Otwinowski, Z. & Sigler, P. G. (1987). The crystal structure of trp aporepressor at 1·8 Å shows how binding tryptophan enhances DNA affinity. Nature 327, 591–597.CrossRefGoogle ScholarPubMed

Zubay, G. & Doty, P. J. (1959). The isolation and properties of deoxyribonucleoprotein particles containing single nucleic acid molecules. J. molec. Biol. 7, 1–20.CrossRefGoogle Scholar