Generation of functional human serotonergic neurons from fibroblasts (original) (raw)
Lesch KP, Waider J . Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 2012; 76: 175–191. ArticleCASPubMed Google Scholar
Deneris ES, Wyler SC . Serotonergic transcriptional networks and potential importance to mental health. Nat Neurosci 2012; 15: 519–527. ArticleCASPubMedPubMed Central Google Scholar
Gaspar P, Cases O, Maroteaux L . The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 2003; 4: 1002–1012. ArticleCASPubMed Google Scholar
Benekareddy M, Vadodaria KC, Nair AR, Vaidya VA . Postnatal serotonin type 2 receptor blockade prevents the emergence of anxiety behavior, dysregulated stress-induced immediate early gene responses, and specific transcriptional changes that arise following early life stress. Biol Psychiatry 2011; 70: 1024–1032. ArticleCASPubMedPubMed Central Google Scholar
Vaidya VA, Vadodaria KC, Jha S . Neurotransmitter regulation of adult neurogenesis: putative therapeutic targets. CNS Neurol Disord Drug Targets 2007; 6: 358–374. ArticleCASPubMed Google Scholar
Lin SH, Lee LT, Yang YK . Serotonin and mental disorders: a concise review on molecular neuroimaging evidence. Clin Psychopharmacol Neurosci 2014; 12: 196–202. ArticleCASPubMedPubMed Central Google Scholar
Mosienko V, Beis D, Pasqualetti M, Waider J, Matthes S, Qadri F et al. Life without brain serotonin: reevaluation of serotonin function with mice deficient in brain serotonin synthesis. Behav Brain Res 2015; 277: 78–88. ArticleCASPubMed Google Scholar
Ming GL, Brustle O, Muotri A, Studer L, Wernig M, Christian KM . Cellular reprogramming: recent advances in modeling neurological diseases. J Neurosci 2011; 31: 16070–16075. ArticleCASPubMedPubMed Central Google Scholar
Gage FH, Temple S . Neural stem cells: generating and regenerating the brain. Neuron 2013; 80: 588–601. ArticleCASPubMed Google Scholar
Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ et al. Induction of human neuronal cells by defined transcription factors. Nature 2011; 476: 220–223. ArticleCASPubMedPubMed Central Google Scholar
Yang N, Ng YH, Pang ZP, Sudhof TC, Wernig M . Induced neuronal cells: how to make and define a neuron. Cell Stem Cell 2011; 9: 517–525. ArticleCASPubMedPubMed Central Google Scholar
Marchetto MC, Brennand KJ, Boyer LF, Gage FH . Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises. Hum Mol Genet 2011; 20: R109–R115. ArticleCASPubMedPubMed Central Google Scholar
Nicholas CR, Chen J, Tang Y, Southwell DG, Chalmers N, Vogt D et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 2013; 12: 573–586. ArticleCASPubMedPubMed Central Google Scholar
Maroof AM, Keros S, Tyson JA, Ying SW, Ganat YM, Merkle FT et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 2013; 12: 559–572. ArticleCASPubMedPubMed Central Google Scholar
Liu Y, Weick JP, Liu H, Krencik R, Zhang X, Ma L et al. Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 2013; 31: 440–447. ArticlePubMedPubMed Central Google Scholar
Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 2011; 476: 224–227. ArticleCASPubMed Google Scholar
Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 2011; 480: 547–551. ArticleCASPubMedPubMed Central Google Scholar
Ye W, Shimamura K, Rubenstein JL, Hynes MA, Rosenthal A . FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 1998; 93: 755–766. ArticleCASPubMed Google Scholar
Kiyasova V, Gaspar P . Development of raphe serotonin neurons from specification to guidance. Eur J Neurosci 2011; 34: 1553–1562. ArticlePubMed Google Scholar
Craven SE, Lim KC, Ye W, Engel JD, de Sauvage F, Rosenthal A . Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 2004; 131: 1165–1173. ArticleCASPubMed Google Scholar
Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 2003; 37: 233–247. ArticleCASPubMed Google Scholar
Zhao ZQ, Scott M, Chiechio S, Wang JS, Renner KJ, Gereau RWt et al. Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J Neurosci 2006; 26: 12781–12788. ArticleCASPubMedPubMed Central Google Scholar
Alenina N, Bashammakh S, Bader M . Specification and differentiation of serotonergic neurons. Stem Cell Rev 2006; 2: 5–10. ArticleCASPubMed Google Scholar
Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 2003; 21: 1200–1207. ArticleCASPubMed Google Scholar
Nefzger CM, Haynes JM, Pouton CW . Directed expression of Gata2, Mash1, and Foxa2 synergize to induce the serotonergic neuron phenotype during in vitro differentiation of embryonic stem cells. Stem Cells 2011; 29: 928–939. ArticleCASPubMed Google Scholar
Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD . Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000; 18: 675–679. ArticleCASPubMed Google Scholar
Shimada T, Takai Y, Shinohara K, Yamasaki A, Tominaga-Yoshino K, Ogura A et al. A simplified method to generate serotonergic neurons from mouse embryonic stem and induced pluripotent stem cells. J Neurochem 2012; 122: 81–93. ArticleCASPubMed Google Scholar
Dolmazon V, Alenina N, Markossian S, Mancip J, van de Vrede Y, Fontaine E et al. Forced expression of LIM homeodomain transcription factor 1b enhances differentiation of mouse embryonic stem cells into serotonergic neurons. Stem Cells Dev 2011; 20: 301–311. ArticleCASPubMed Google Scholar
Kumar M, Kaushalya SK, Gressens P, Maiti S, Mani S . Optimized derivation and functional characterization of 5-HT neurons from human embryonic stem cells. Stem Cells Dev 2009; 18: 615–627. ArticleCASPubMed Google Scholar
Tailor J, Kittappa R, Leto K, Gates M, Borel M, Paulsen O et al. Stem cells expanded from the human embryonic hindbrain stably retain regional specification and high neurogenic potency. J Neurosci 2013; 33: 12407–12422. ArticleCASPubMedPubMed Central Google Scholar
Malchenko S, Xie J, de Fatima Bonaldo M, Vanin EF, Bhattacharyya BJ, Belmadani A et al. Onset of rosette formation during spontaneous neural differentiation of hESC and hiPSC colonies. Gene 2014; 534: 400–407. ArticleCASPubMed Google Scholar
Kim KS . Converting human skin cells to neurons: a new tool to study and treat brain disorders? Cell Stem Cell 2011; 9: 179–181. ArticleCASPubMed Google Scholar
Pfisterer U, Wood J, Nihlberg K, Hallgren O, Bjermer L, Westergren-Thorsson G et al. Efficient induction of functional neurons from adult human fibroblasts. Cell Cycle 2011; 10: 3311–3316. ArticleCASPubMed Google Scholar
Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC et al. Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 2013; 31: 426–433. ArticleCASPubMedPubMed Central Google Scholar
Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 2011; 9: 205–218. ArticleCASPubMedPubMed Central Google Scholar
Liu ML, Zang T, Zou Y, Chang JC, Gibson JR, Huber KM et al. Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun 2013; 4: 2183. ArticlePubMed Google Scholar
Boyer LF, Campbell B, Larkin S, Mu Y, Gage FH . Dopaminergic differentiation of human pluripotent cells. Curr Protoc Stem Cell Biol 2012; Chapter 1: Unit1H 6. PubMed Google Scholar
Ladewig J, Mertens J, Kesavan J, Doerr J, Poppe D, Glaue F et al. Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nat Methods 2012; 9: 575–578. ArticleCASPubMed Google Scholar
Gentile MT, Nawa Y, Lunardi G, Florio T, Matsui H, Colucci-D'Amato L . Tryptophan hydroxylase 2 (TPH2) in a neuronal cell line: modulation by cell differentiation and NRSF/rest activity. J Neurochem 2012; 123: 963–970. ArticleCASPubMed Google Scholar
Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 2010; 143: 527–539. ArticleCASPubMedPubMed Central Google Scholar
Vadodaria KC, Brakebusch C, Suter U, Jessberger S . Stage-specific functions of the small Rho GTPases Cdc42 and Rac1 for adult hippocampal neurogenesis. J Neurosci 2013; 33: 1179–1189. ArticleCASPubMedPubMed Central Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al STAR: ultrafast universal RNA-seq aligner Bioinformatics 2013; 29: 15–21. ArticleCASPubMed Google Scholar
Bardy C, van den Hurk M, Eames T, Marchand C, Hernandez RV et al. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proc Natl Acad Sci U S A 2015; 112: E2725–E2734. ArticleCASPubMedPubMed Central Google Scholar
Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L . Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009; 27: 275–280. ArticleCASPubMedPubMed Central Google Scholar
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M . Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463: 1035–1041. ArticleCASPubMedPubMed Central Google Scholar
Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 2011; 9: 113–118. ArticleCASPubMedPubMed Central Google Scholar
Broccoli V, Caiazzo M, Dell'Anno MT . Setting a highway for converting skin into neurons. J Mol Cell Biol 2011; 3: 322–323. ArticlePubMed Google Scholar
Wapinski OL, Vierbuchen T, Qu K, Lee QY, Chanda S, Fuentes DR et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 2013; 155: 621–635. ArticleCASPubMed Google Scholar
Spaethling JM, Piel D, Dueck H, Buckley PT, Morris JF, Fisher SA et al. Serotonergic neuron regulation informed by in vivo single-cell transcriptomics. FASEB J 2014; 28: 771–780. ArticlePubMedPubMed Central Google Scholar
Dougherty JD, Maloney SE, Wozniak DF, Rieger MA, Sonnenblick L, Coppola G et al. The disruption of Celf6, a gene identified by translational profiling of serotonergic neurons, results in autism-related behaviors. J Neurosci 2013; 33: 2732–2753. ArticleCASPubMedPubMed Central Google Scholar
Diaz SL, Doly S, Narboux-Neme N, Fernandez S, Mazot P, Banas SM et al. 5-HT(2B) receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 2012; 17: 154–163. ArticleCASPubMed Google Scholar
Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 2010; 65: 40–52. ArticleCASPubMedPubMed Central Google Scholar
Studer L . Derivation of dopaminergic neurons from pluripotent stem cells. Prog Brain Res 2012; 200: 243–263. ArticlePubMed Google Scholar
Sanchez-Pernaute R, Studer L, Bankiewicz KS, Major EO, McKay RD . In vitro generation and transplantation of precursor-derived human dopamine neurons. J Neurosci Res 2001; 65: 284–288. ArticleCASPubMed Google Scholar
Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci USA 2011; 108: 10343–10348. ArticleCASPubMedPubMed Central Google Scholar
Liu X, Li F, Stubblefield EA, Blanchard B, Richards TL, Larson GA et al. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res 2012; 22: 321–332. ArticleCASPubMed Google Scholar
Cheng L, Chen CL, Luo P, Tan M, Qiu M, Johnson R et al. Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J Neurosci 2003; 23: 9961–9967. ArticleCASPubMedPubMed Central Google Scholar
Ding YQ, Marklund U, Yuan W, Yin J, Wegman L, Ericson J et al. Lmx1b is essential for the development of serotonergic neurons. Nat Neurosci 2003; 6: 933–938. ArticleCASPubMed Google Scholar
Scott MM, Krueger KC, Deneris ES . A differentially autoregulated Pet-1 enhancer region is a critical target of the transcriptional cascade that governs serotonin neuron development. J Neurosci 2005; 25: 2628–2636. ArticleCASPubMedPubMed Central Google Scholar
Krueger KC, Deneris ES . Serotonergic transcription of human FEV reveals direct GATA factor interactions and fate of Pet-1-deficient serotonin neuron precursors. J Neurosci 2008; 28: 12748–12758. ArticleCASPubMedPubMed Central Google Scholar
Marinelli S, Schnell SA, Hack SP, Christie MJ, Wessendorf MW, Vaughan CW . Serotonergic and nonserotonergic dorsal raphe neurons are pharmacologically and electrophysiologically heterogeneous. J Neurophysiol 2004; 92: 3532–3537. ArticleCASPubMed Google Scholar
Hajos M, Gartside SE, Villa AE, Sharp T . Evidence for a repetitive (burst) firing pattern in a sub-population of 5-hydroxytryptamine neurons in the dorsal and median raphe nuclei of the rat. Neuroscience 1995; 69: 189–197. ArticleCASPubMed Google Scholar
Allers KA, Sharp T . Neurochemical and anatomical identification of fast- and slow-firing neurones in the rat dorsal raphe nucleus using juxtacellular labelling methods in vivo. Neuroscience 2003; 122: 193–204. ArticleCASPubMed Google Scholar
Kocsis B, Varga V, Dahan L, Sik A . Serotonergic neuron diversity: identification of raphe neurons with discharges time-locked to the hippocampal theta rhythm. Proc Natl Acad Sci USA 2006; 103: 1059–1064. ArticleCASPubMedPubMed Central Google Scholar
Varga V, Szekely AD, Csillag A, Sharp T, Hajos M . Evidence for a role of GABA interneurones in the cortical modulation of midbrain 5-hydroxytryptamine neurones. Neuroscience 2001; 106: 783–792. ArticleCASPubMed Google Scholar
Albert PR, Benkelfat C . The neurobiology of depression—revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies. Philos Trans R Soc Lond B Biol Sci 2013; 368: 20120535. ArticlePubMedPubMed Central Google Scholar
Charney DS . Monoamine dysfunction and the pathophysiology and treatment of depression. J Clin Psychiatry 1998; 59: 11–14. CASPubMed Google Scholar
Meltzer HY . The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 1999; 21: 106S–115S. ArticleCASPubMed Google Scholar
Nagayasu K, Kitaichi M, Nishitani N, Asaoka N, Shirakawa H, Nakagawa T et al. Chronic effects of antidepressants on serotonin release in rat raphe slice cultures: high potency of milnacipran in the augmentation of serotonin release. Int J Neuropsychopharmacol 2013; 16: 2295–2306. ArticleCASPubMed Google Scholar
Komlosi G, Molnar G, Rozsa M, Olah S, Barzo P, Tamas G . Fluoxetine (prozac) and serotonin act on excitatory synaptic transmission to suppress single layer 2/3 pyramidal neuron-triggered cell assemblies in the human prefrontal cortex. J Neurosci 2012; 32: 16369–16378. ArticleCASPubMedPubMed Central Google Scholar
Fernstrom JD . Role of precursor availability in control of monoamine biosynthesis in brain. Physiol Rev 1983; 63: 484–546. ArticleCASPubMed Google Scholar