The DNA damage response and cancer therapy (original) (raw)
Boveri, T. Zur Frage der Entstehung Maligner Tumoren (Gustav Fischer, 1914). Google Scholar
Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci.121, 1–84 (2008). A translation of Boveri's original work that proposed the hypothesis that a form of genomic dysregulation characterizes tumour cells. ArticlePubMed Google Scholar
Phillips, D. H., Hewer, A., Martin, C. N., Garner, R. C. & King, M. M. Correlation of DNA adduct levels in human lung with cigarette smoking. Nature336, 790–792 (1988). ArticleADSCASPubMed Google Scholar
Nakabeppu, Y. et al. Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids. Biol. Chem.387, 373–379 (2006). ArticleCASPubMed Google Scholar
Cleaver, J. E., Lam, E. T. & Revet, I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nature Rev. Genet.10, 756–768 (2009). ArticleCASPubMed Google Scholar
Moynahan, M. E. & Jasin, M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nature Rev. Mol. Cell Biol.11, 196–207 (2010). ArticleCAS Google Scholar
Lieber, M. R. NHEJ and its backup pathways in chromosomal translocations. Nature Struct. Mol. Biol.17, 393–395 (2010). ArticleCAS Google Scholar
Jiricny, J. The multifaceted mismatch-repair system. Nature Rev. Mol. Cell Biol7, 335–346 (2006). ArticleCAS Google Scholar
Artandi, S. E. & DePinho, R. A. Telomeres and telomerase in cancer. Carcinogenesis31, 9–18 (2010). ArticleCASPubMed Google Scholar
Bell, O., Tiwari, V. K., Thoma, N. H. & Schubeler, D. Determinants and dynamics of genome accessibility. Nature Rev. Genet.12, 554–564 (2011). ArticleCASPubMed Google Scholar
Warmerdam, D. O. & Kanaar, R. Dealing with DNA damage: relationships between checkpoint and repair pathways. Mutat. Res.704, 2–11 (2010). ArticleCASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature474, 609–615 (2011).
Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature444, 633–637 (2006). ArticleADSCASPubMed Google Scholar
Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science319, 1352–1355 (2008). References 18 and 19 describes how oncogenes are able to induce the DDR early in oncogenesis. ArticleADSCASPubMed Google Scholar
Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nature Rev. Cancer4, 814–819 (2004). ArticleCAS Google Scholar
Banerjee, S., Kaye, S. B. & Ashworth, A. Making the best of PARP inhibitors inovarian cancer. Nature Rev. Clin. Oncol.7, 508–519 (2010). ArticleCAS Google Scholar
Friboulet, L. et al. Molecular characteristics of ERCC1-negative versus ERCC1-positive tumors in resected NSCLC. Clin. Cancer Res.17, 5562–5572 (2011). ArticleCASPubMed Google Scholar
Weller, M. et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nature Rev. Neurol.6, 39–51 (2010). ArticleCAS Google Scholar
Pommier, Y., Leo, E., Zhang, H. & Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol.17, 421–433 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H. & Poirier, G. G. PARP inhibition: PARP1 and beyond. Nature Rev. Cancer10, 293–301 (2010). ArticleCAS Google Scholar
Zaremba, T. & Curtin, N. J. PARP inhibitor development for systemic cancer targeting. Anticancer Agents Med. Chem.7, 515–523 (2007). ArticleCASPubMed Google Scholar
Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434, 917–921 (2005). ArticleADSCASPubMed Google Scholar
Bryant, H. E. et al. Specific killing of _BRCA2_-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature434, 913–917 (2005). References 27 and 28 describe the synthetic lethal interaction between BRCA mutations and PARP inhibition. ArticleADSCASPubMed Google Scholar
Lord, C. J. & Ashworth, A. Targeted therapy for cancer using PARP inhibitors. Curr. Opin. Pharmacol.8, 363–369 (2008). ArticleCASPubMed Google Scholar
Dobzhansky, T. Genetics of natural populations. Xiii. Recombination and variability in populations of drosophila pseudoobscura . Genetics31, 269–290 (1946). CASPubMedPubMed Central Google Scholar
Lucchesi, J. C. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanogaster . Genetics59, 37–44 (1968). CASPubMedPubMed Central Google Scholar
Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. Integrating genetic approaches into the discovery of anticancer drugs. Science278, 1064–1068 (1997). ArticleADSCASPubMed Google Scholar
Kaelin, W. G. Jr. Synthetic lethality: a framework for the development of wiser cancer therapeutics. Genome Med.1, 99 (2009). ArticlePubMedPubMed Central Google Scholar
Issaeva, N. et al. 6-Thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance. Cancer Res.70, 6268–6276 (2010). ArticleCASPubMedPubMed Central Google Scholar
Martin, S. A. et al. DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. Cancer Cell17, 235–248 (2010). ArticleCASPubMedPubMed Central Google Scholar
Martin, S. A., Hewish, M., Sims, D., Lord, C. J. & Ashworth, A. Parallel high-throughput RNA interference screens identify PINK1 as a potential therapeutic target for the treatment of DNA mismatch repair-deficient cancers. Cancer Res.71, 1836–1848 (2011). ArticleCASPubMed Google Scholar
Martin, S. A. et al. Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2 . EMBO Mol. Med.1, 323–337 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med.361, 123–134 (2009). This article describes the results of the first clinical trial to demonstrate the clinical potential of a synthetic lethal approach for therapy. ArticleCASPubMed Google Scholar
Balmaña, J., Domchek, S. M., Tutt, A. & Garber, J. E. Stumbling blocks on the path to personalized medicine in breast cancer: the case of PARP inhibitors for BRCA1/2-associated cancers. Cancer Discov.1, 29–34 (2011). ArticlePubMed Google Scholar
Mendeleyev, J., Kirsten, E., Hakam, A., Buki, K. G. & Kun, E. Potential chemotherapeutic activity of 4-iodo-3-nitrobenzamide. Metabolic reduction to the 3-nitroso derivative and induction of cell death in tumor cells in culture. Biochem. Pharmacol.50, 705–714 (1995). ArticleCASPubMed Google Scholar
Liu, X. et al. Iniparib non-selectively modifies cysteine-containing proteins in tumor cells and is not a bona fide PARP inhibitor. Clin. Cancer Res. advance ahead of print http://dx.doi.org/10.1158/1078-0432.CCR-11-1973 (29 November 2011).
McCabe, N. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res.66, 8109–8115 (2006). ArticleCASPubMed Google Scholar
Peasland, A. et al. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br. J. Cancer105, 372–381 (2011). ArticleCASPubMedPubMed Central Google Scholar
Murai, J. et al. The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Mol. Cell. Biol.31, 2462–2469 (2011). ArticleCASPubMedPubMed Central Google Scholar
Moskwa, P. et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol. Cell41, 210–220 (2011). ArticleCASPubMed Google Scholar
Johnson, N. et al. Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nature Med.17, 875–882 (2011). ArticleCASPubMed Google Scholar
Akamatsu, Y. & Jasin, M. Role for the mammalian Swi5−Sfr1 complex in DNA strand break repair through homologous recombination. PLoS Genet.6, e1001160 (2010). ArticlePubMedPubMed Central Google Scholar
Brenner, J. C. et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell19, 664–678 (2011). An important paper suggesting thatETSgene fusions may confer PARP-inhibitor sensitivity in prostate cancer. ArticleCASPubMedPubMed Central Google Scholar
Edwards, S. L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature451, 1111–1115 (2008). ArticleADSCASPubMed Google Scholar
Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in _BRCA2_-mutated cancers. Nature451, 1116–1120 (2008). References 50 and 51 are the first demonstrations of synthetic lethal resistance to PARP inhibitors and platinum drugs inBRCA-mutant cells. ArticleADSCASPubMedPubMed Central Google Scholar
Sakai, W. et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in _BRCA2_-mutated ovarian carcinoma. Cancer Res.69, 6381–6386 (2009). ArticleCASPubMedPubMed Central Google Scholar
Swisher, E. M. et al. Secondary BRCA1 mutations in _BRCA1_-mutated ovarian carcinomas with platinum resistance. Cancer Res.68, 2581–2586 (2008). ArticleCASPubMedPubMed Central Google Scholar
Norquist, B. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol.29, 3008–3015 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rottenberg, S. et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl Acad. Sci. USA105, 17079–17084 (2008). ArticleADSCASPubMedPubMed Central Google Scholar
Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and _BRCA_- mutated breast cancers. Nature Struct. Mol. Biol.17, 688–695 (2010). ArticleCAS Google Scholar
Bunting, S. F. et al. 53BP1 inhibits homologous recombination in _Brca1_-deficient cells by blocking resection of DNA breaks. Cell141, 243–254 (2010). ArticleCASPubMedPubMed Central Google Scholar
Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature458, 732–736 (2009). This paper provides proof of the concept that targeting additional elements of the DDR and replication machinery, such as neddylation complexes, could provide an alternative approach to cancer therapy. ArticleADSCASPubMed Google Scholar
Zhang, M., Atkinson, R. L. & Rosen, J. M. Selective targeting of radiation-resistant tumor-initiating cells. Proc. Natl Acad. Sci. USA107, 3522–3527 (2010). ArticleADSCASPubMedPubMed Central Google Scholar
Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004). ArticleADSCASPubMed Google Scholar
Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444, 756–760 (2006). ArticleADSCASPubMed Google Scholar
Mantoni, T. S., Lunardi, S., Al-Assar, O., Masamune, A. & Brunner, T. B. Pancreatic stellate cells radioprotect pancreatic cancer cells through beta 1-integrin signaling. Cancer Res.71, 3453–3458 (2011). ArticleCASPubMedPubMed Central Google Scholar
Stratton, M. R. Exploring the genomes of cancer cells: progress and promise. Science331, 1553–1558 (2011). ArticleADSCASPubMed Google Scholar
Graeser, M. et al. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res.16, 6159–6168 (2010). ArticleCASPubMedPubMed Central Google Scholar
Polo, S. E. & Jackson, S. P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev.25, 409–433 (2011). ArticleCASPubMedPubMed Central Google Scholar
Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell146, 889–903 (2011). ArticleCASPubMedPubMed Central Google Scholar