- Giovannoni, J. Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Physiol. 52, 725–749 (2001).
Article CAS Google Scholar
- Tanksley, S.D. & McCouch, S.R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066 (1997).
Article CAS PubMed Google Scholar
- Zamir, D. Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2, 983–989 (2001).
Article CAS PubMed Google Scholar
- Fulton, T.M. et al. Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127, 163–177 (2002).
Article CAS Google Scholar
- Schauer, N., Zamir, D. & Fernie, A.R. Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J. Exp. Bot. 56, 297–307 (2005).
Article CAS PubMed Google Scholar
- Causse, M. et al. QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J. Exp. Bot. 53, 2089–2098 (2002).
Article CAS PubMed Google Scholar
- Rousseaux, M.C. et al. QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor. Appl. Genet. 111, 1396–1408 (2005).
Article CAS PubMed Google Scholar
- Liu, Y.-S. et al. There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol. J. 1, 195–207 (2003).
Article CAS PubMed Google Scholar
- Moose, S.P., Dudley, J.W. & Rocheford, T.R. Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci. 9, 358–364 (2004).
Article CAS PubMed Google Scholar
- Fernie, A.R. & Willmitzer, L. Carbohydrate metabolism. in The Handbook of Plant Biotechnology (eds. Christou, P. & Klee, H.K.) (Wiley, Chichester, UK, 2004).
Google Scholar
- Kliebenstein, D.J. et al. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126, 811–825 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Kissebah, A.H. et al. Novel genetic pathway for the abdominal obesity metabolic syndrome (AMOS): preliminary analysis from the TOPS/MRC-OB genes project. Obes. Res. 8 (suppl.), 4S–4S (2000).
Google Scholar
- Montooth, K.L., Clark, A.G. & Marden, J.H. Physiological genetics of flight performance in Drosophila melanogaster. Am. Zool. 40, 1135–1136 (2000).
Google Scholar
- Barabasi, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113 (2004).
Article CAS PubMed Google Scholar
- Fernie, A.R., Trethewey, R.N., Krotzky, A.J. & Willmitzer, L. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763–769 (2004).
Article CAS PubMed Google Scholar
- Guimera, R. & Nunes Amaral, L.A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Gibon, Y. et al. A Robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16, 3304–3325 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Gygi, S.P., Rochon, Y., Franza, B.R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Oksman-Caldentey, K.M. & Saito, K. Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr. Opin. Biotechnol. 16, 174–179 (2005).
Article CAS PubMed Google Scholar
- Dudley, N.R. & Goldstein, B. RNA interference in Caenorhabditis elegans. Methods Mol. Biol. 309, 29–38 (2005).
CAS PubMed Google Scholar
- Roessner, U. et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13, 11–29 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Eshed, Y. & Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141, 1147–1162 (1995).
CAS PubMed PubMed Central Google Scholar
- Stark, D.M., Timmerman, K.P., Barry, G.F., Preiss, J. & Kishore, G.M. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258, 287–292 (1992).
Article CAS PubMed Google Scholar
- Brown, J.K. Yield penalties of disease resistance in crops. Curr. Opin. Plant Biol. 5, 339–344 (2002).
Article CAS PubMed Google Scholar
- Raamsdonk, L.M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50 (2001).
Article CAS PubMed Google Scholar
- Causse, M. et al. A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J. Exp. Bot. 55, 1671–1685 (2004).
Article CAS PubMed Google Scholar
- Gur, A., Semel, Y., Cahaner, A. & Zamir, D. Real time QTL of complex phenotypes in tomato interspecific introgression lines. Trends Plant Sci. 9, 107–109 (2004).
Article CAS PubMed Google Scholar
- Galili, G. & Hofgen, R. Metabolic engineering of amino acids and storage proteins in plants. Metab. Eng. 4, 3–11 (2002).
Article CAS PubMed Google Scholar
- Roessner-Tunali, U. et al. Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol. 133, 84–99 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Mueller, L.A. et al. The Tomato Sequencing Project, the first cornerstone of the International Solanaceae Project (SOL). Comp. Funct. Genom. 6, 153–158 (2005).
Article CAS Google Scholar
- Pnueli, L. et al. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125, 1979–1989 (1998).
CAS PubMed Google Scholar
- Wigge, P.A. et al. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059 (2005).
Article CAS PubMed Google Scholar
- Huang, T., Bohlenius, H., Eriksson, S., Parcy, F. & Nilsson, O. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309, 1694–1696 (2005).
Article CAS PubMed Google Scholar
- Fridman, E. et al. Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol. Genet. Genomics 266, 821–826 (2002).
Article CAS PubMed Google Scholar
- Emery, G.C. & Munger, H.M. Effects of inherited differences in growth habit on fruit size and soluble solids in tomato. J. Am. Soc. Hortic. Sci. 95, 51–56 (1970).
Google Scholar
- Brindle, J.T. et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med. 8, 1439–1444 (2002).
Article CAS PubMed Google Scholar
- Grandillo, S., Zamir, D. & Tanksley, S.D. Genetic improvement of processing tomatoes: a 20 years perspective. Euphytica 110, 85–97 (1999).
Article Google Scholar
- Davuluri, G.R. et al. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J. 40, 344–354 (2004).
Article CAS PubMed Google Scholar
- Bovy, A. et al. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14, 2509–2526 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Koyama, H. et al. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol. 41, 1030–1037 (2000).
Article CAS PubMed Google Scholar
- Weckwerth, W., Loureiro, M.E., Wenzel, K. & Fiehn, O. Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl. Acad. Sci. USA 101, 7809–7814 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Alba, R. et al. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17, 2954–2965 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Lumba, S. & McCourt, P. Preventing leaf identity theft with hormones. Curr. Opin. Plant Biol. 8, 501–505 (2005).
Article CAS PubMed Google Scholar
- Fridman, E., Pleban, T. & Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA 97, 4718–4723 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Fridman, E., Carrari, F., Liu, Y.S., Fernie, A.R. & Zamir, D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305, 1786–1789 (2004).
Article CAS PubMed Google Scholar
- Baxter, C.J. et al. Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids. Plant Cell Physiol. 46, 425–437 (2005).
Article CAS PubMed Google Scholar
- Chesler, E.J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37, 233–242 (2005).
Article CAS PubMed Google Scholar
- Stitt, M. & Fernie, A.R. From measurements of metabolites to metabolomics: an 'on the fly' perspective illustrated by recent studies of carbon-nitrogen interactions. Curr. Opin. Biotechnol. 14, 136–144 (2003).
Article CAS PubMed Google Scholar
- McCouch, S. Diversifying selection in plant breeding. PLoS Biol. 2, e347 (2004).
Article PubMed PubMed Central Google Scholar