RNA interference against viruses: strike and counterstrike (original) (raw)
Bitko, V. & Barik, S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol.1, 34 (2001). ArticleCASPubMedPubMed Central Google Scholar
Haasnoot, P.C.J. & Berkhout, B. RNA interference: its use as antiviral therapy. in Handbook of Experimental Pharmacology Vol. 173, 117–150 (Springer, Berlin and Heidelberg, 2006). Google Scholar
Coburn, G.A. & Cullen, B.R. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J. Virol.76, 9225–9231 (2002). ArticleCASPubMedPubMed Central Google Scholar
Jacque, J.M., Triques, K. & Stevenson, M. Modulation of HIV-1 replication by RNA interference. Nature418, 435–438 (2002). ArticleCASPubMed Google Scholar
Lee, N.S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol.20, 500–505 (2002). ArticleCASPubMed Google Scholar
Novina, C.D. et al. siRNA-directed inhibition of HIV-1 infection. Nat. Med.8, 681–686 (2002). ArticleCASPubMed Google Scholar
Qin, X.F., An, D.S., Chen, I.S.Y. & Baltimore, D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl. Acad. Sci. USA100, 183–188 (2003). ArticleCASPubMed Google Scholar
Kronke, J. et al. Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J. Virol.78, 3436–3446 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yokota, T. et al. Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. EMBO Rep.4, 602–608 (2003). ArticleCASPubMedPubMed Central Google Scholar
McCaffrey, A.P. et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol.21, 639–644 (2003). ArticlePubMed Google Scholar
Shlomai, A. & Shaul, Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology37, 764–770 (2003). ArticleCASPubMed Google Scholar
He, M.L. et al. Inhibition of SARS-associated coronavirus infection and replication by RNA interference. J. Am. Med. Assoc.290, 2665–2666 (2003). ArticleCAS Google Scholar
Li, B.J. et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med.11, 944–951 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ge, Q. et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA100, 2718–2723 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kurreck, J. Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem.270, 1628–1644 (2003). ArticleCASPubMed Google Scholar
Larsen, H.J., Bentin, T. & Nielsen, P.E. Antisense properties of peptide nucleic acid. Biochim. Biophys. Acta1489, 159–166 (1999). ArticleCASPubMed Google Scholar
Petersen, M. & Wengel, J. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol.21, 74–81 (2003). ArticleCASPubMed Google Scholar
Iversen, P.L. Phosphorodiamidate morpholino oligomers: favorable properties for sequence-specific gene inactivation. Curr. Opin. Mol. Ther.3, 235–238 (2001). CASPubMed Google Scholar
Jakobsen, M.R., Haasnoot, J., Wengel, J., Berkhout, B. & Kjems, J. Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites. Retrovirology4, 29 (2007). ArticlePubMedPubMed Central Google Scholar
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). ArticleCASPubMed Google Scholar
Waterhouse, P.M., Wang, M.B. & Lough, T. Gene silencing as an adaptive defence against viruses. Nature411, 834–842 (2001). ArticleCASPubMed Google Scholar
Voinnet, O. RNA silencing as a plant immune system against viruses. Trends Genet.17, 449–459 (2001). ArticleCASPubMed Google Scholar
Wilkins, C. et al. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature436, 1044–1047 (2005). ArticleCASPubMed Google Scholar
Segers, G.C., Zhang, X., Deng, F., Sun, Q. & Nuss, D.L. Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc. Natl. Acad. Sci. USA104, 12902–12906 (2007). ArticleCASPubMedPubMed Central Google Scholar
Haasnoot, P.C.J., Cupac, D. & Berkhout, B. Inhibition of virus replication by RNA interference. J. Biomed. Sci.10, 607–616 (2003). ArticlePubMed Google Scholar
Bennasser, Y., Le, S.Y., Benkirane, M. & Jeang, K.T. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity22, 607–619 (2005). ArticleCASPubMed Google Scholar
Cullen, B.R. Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat. Immunol.7, 563–567 (2006). ArticleCASPubMed Google Scholar
Berkhout, B. & Jeang, K.T. RISCy business: microRNAs, pathogenesis, and viruses. J. Biol. Chem.282, 26641–26645 (2007). ArticleCASPubMed Google Scholar
Lecellier, C.H. et al. A cellular microRNA mediates antiviral defense in human cells. Science308, 557–560 (2005). ArticleCASPubMed Google Scholar
Otsuka, M. et al. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity27, 123–134 (2007). ArticleCASPubMed Google Scholar
Huang, J. et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4(+) T lymphocytes. Nat. Med.13, 1241–1247 (2007). ArticleCASPubMed Google Scholar
Sijen, T. & Plasterk, R.H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature426, 310–314 (2003). ArticleCASPubMed Google Scholar
Soifer, H.S., Zaragoza, A., Peyvan, M., Behlke, M.A. & Rossi, J.J. A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon. Nucleic Acids Res.33, 846–856 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yang, N. & Kazazian, H.H. Jr . L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat. Struct. Mol. Biol.13, 763–771 (2006). ArticleCASPubMed Google Scholar
Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science309, 1577–1581 (2005). ArticleCASPubMed Google Scholar
Grundhoff, A., Sullivan, C.S. & Ganem, D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA12, 733–750 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nat. Methods2, 269–276 (2005). ArticleCASPubMed Google Scholar
Gupta, A., Gartner, J.J., Sethupathy, P., Hatzigeorgiou, A.G. & Fraser, N.W. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature442, 82–85 (2006). ArticleCASPubMed Google Scholar
Sullivan, C.S., Grundhoff, A.T., Tevethia, S., Pipas, J.M. & Ganem, D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature435, 682–686 (2005). ArticleCASPubMed Google Scholar
Li, F. & Ding, S.W. Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu. Rev. Microbiol.60, 503–531 (2006). ArticleCASPubMedPubMed Central Google Scholar
Li, W.X. et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl. Acad. Sci. USA101, 1350–1355 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lu, S. & Cullen, B.R. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J. Virol.78, 12868–12876 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. Hepatitis C virus core protein is a potent inhibitor of RNA silencing-based antiviral response. Gastroenterology130, 883–892 (2006). ArticleCASPubMed Google Scholar
Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001). ArticleCASPubMed Google Scholar
Morrissey, D.V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol.23, 1002–1007 (2005). ArticleCASPubMed Google Scholar
Morrissey, D.V. et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology41, 1349–1356 (2005). ArticleCASPubMed Google Scholar
Rana, T.M. Illuminating the silence: understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell Biol.8, 23–36 (2007). ArticleCASPubMed Google Scholar
Czauderna, F. et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res.31, 2705–2716 (2003). ArticleCASPubMedPubMed Central Google Scholar
Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science296, 550–553 (2002). ArticleCASPubMed Google Scholar
Boden, D. et al. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res.32, 1154–1158 (2004). ArticleCASPubMedPubMed Central Google Scholar
Du, G., Yonekubo, J., Zeng, Y., Osisami, M. & Frohman, M.A. Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS J.273, 5421–5427 (2006). ArticleCASPubMed Google Scholar
Silva, J.M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet.37, 1281–1288 (2005). ArticleCASPubMed Google Scholar
Lo, H.L. et al. Inhibition of HIV-1 replication with designed miRNAs expressed from RNA polymerase II promoters. Gene Ther.14, 1503–1512 (2007). ArticleCASPubMed Google Scholar
Akashi, H. et al. Escape from the interferon response associated with RNA interference using vectors that encode long modified hairpin-RNA. Mol. Biosyst.1, 382–390 (2005). ArticleCASPubMed Google Scholar
Konstantinova, P. et al. Inhibition of human immunodeficiency virus type 1 by RNA interference using long-hairpin RNA. Gene Ther.13, 1403–1413 (2006). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y.P., Haasnoot, J. & Berkhout, B. Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res. (2007).
Nishitsuji, H., Kohara, M., Kannagi, M. & Masuda, T. Effective suppression of human immunodeficiency virus type 1 through a combination of short- or long-hairpin RNAs targeting essential sequences for retroviral integration. J. Virol.80, 7658–7666 (2006). ArticleCASPubMedPubMed Central Google Scholar
Watanabe, T. et al. Intracellular-diced dsRNA has enhanced efficacy for silencing HCV RNA and overcomes variation in the viral genotype. Gene Ther.13, 883–892 (2006). ArticleCASPubMed Google Scholar
Weinberg, M.S. et al. Specific inhibition of HBV replication in vitro and in vivo with expressed long hairpin RNA. Mol. Ther.15, 534–541 (2007). ArticleCASPubMed Google Scholar
Boden, D., Pusch, O., Lee, F., Tucker, L. & Ramratnam, B. Human immunodeficiency virus type 1 escape from RNA interference. J. Virol.77, 11531–11535 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wilson, J.A. & Richardson, C.D. Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J. Virol.79, 7050–7058 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wu, H.L. et al. RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant. Gastroenterology128, 708–716 (2005). ArticleCASPubMed Google Scholar
Gitlin, L., Stone, J.K. & Andino, R. Poliovirus escape from RNA interference: short interfering RNA-target recognition and implications for therapeutic approaches. J. Virol.79, 1027–1035 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kusov, Y., Kanda, T., Palmenberg, A., Sgro, J.Y. & Gauss-Muller, V. Silencing of hepatitis A virus infection by small interfering RNAs. J. Virol.80, 5599–5610 (2006). ArticleCASPubMedPubMed Central Google Scholar
Das, A.T. et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol.78, 2601–2605 (2004). ArticleCASPubMedPubMed Central Google Scholar
Arrighi, J.F. et al. DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J. Exp. Med.200, 1279–1288 (2004). ArticleCASPubMedPubMed Central Google Scholar
Liu, S. et al. Inhibition of HIV-1 multiplication by antisense U7 snRNAs and siRNAs targeting cyclophilin A. Nucleic Acids Res.32, 3752–3759 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ping, Y.H. et al. Modulating HIV-1 replication by RNA interference directed against human transcription elongation factor SPT5. Retrovirology1, 46 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zhou, N., Fang, J., Mukhtar, M., Acheampong, E. & Pomerantz, R.J. Inhibition of HIV-1 fusion with small interfering RNAs targeting the chemokine coreceptor CXCR4. Gene Ther.11, 1703–1712 (2004). ArticleCASPubMed Google Scholar
Samson, M. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature382, 722–725 (1996). ArticleCASPubMed Google Scholar
Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell86, 367–377 (1996). ArticleCASPubMed Google Scholar
Triboulet, R. et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science315, 1579–1582 (2007). ArticleCASPubMed Google Scholar
Morris, K.V., Chan, S.W., Jacobsen, S.E. & Looney, D.J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science305, 1289–1292 (2004). ArticleCASPubMed Google Scholar
Han, J., Kim, D. & Morris, K.V. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc. Natl. Acad. Sci. USA104, 12422–12427 (2007). ArticleCASPubMedPubMed Central Google Scholar
Weinberg, M.S. et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA12, 256–262 (2006). ArticleCASPubMedPubMed Central Google Scholar
Haraguchi, T. et al. SiRNAs do not induce RNA-dependent transcriptional silencing of retrovirus in human cells. FEBS Lett.581, 4949–4954 (2007). ArticleCASPubMed Google Scholar
Ge, Q. et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. USA101, 8676–8681 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bitko, V., Musiyenko, A., Shulyayeva, O. & Barik, S. Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med.11, 50–55 (2005). ArticlePubMed Google Scholar
Zhang, W. et al. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat. Med.11, 56–62 (2005). ArticleCASPubMed Google Scholar
Rossi, J.J. RNAi as a treatment for HIV-1 infection. Biotechniques40 (Suppl.), 25–29 (2006). ArticleCAS Google Scholar
Westerhout, E.M., Ooms, M., Vink, M., Das, A.T. & Berkhout, B. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res.33, 796–804 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ter Brake, O., Konstantinova, P., Ceylan, M. & Berkhout, B. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol. Ther.14, 883–892 (2006). ArticleCASPubMed Google Scholar
van der Hoek, L. et al. Increased multinucleoside drug resistance and decreased replicative capacity of a human immunodeficiency virus type 1 variant with an 8-amino-acid insert in the reverse transcriptase. J. Virol.79, 3536–3543 (2005). ArticleCASPubMedPubMed Central Google Scholar
Grimm, D. & Kay, M.A. Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol. Ther.15, 878–888 (2007). ArticleCASPubMed Google Scholar
Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet.34, 263–264 (2003). ArticleCASPubMed Google Scholar
Jackson, A.L. & Linsley, P.S. Noise amidst the silence: off-target effects of siRNAs? Trends Genet.20, 521–524 (2004). ArticleCASPubMed Google Scholar
Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature441, 537–541 (2006). ArticleCASPubMed Google Scholar
Wang, M.B. et al. On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc. Natl. Acad. Sci. USA101, 3275–3280 (2004). ArticleCASPubMedPubMed Central Google Scholar
Itaya, A. et al. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J. Virol.81, 2980–2994 (2007). ArticleCASPubMedPubMed Central Google Scholar
Flores, R. et al. Viroids: the minimal non-coding RNAs with autonomous replication. FEBS Lett.567, 42–48 (2004). ArticleCASPubMed Google Scholar
Chang, J. & Taylor, J.M. Susceptibility of human hepatitis delta virus RNAs to small interfering RNA action. J. Virol.77, 9728–9731 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rohll, J.B. et al. The 5′-untranslated regions of picornavirus RNAs contain independent functional domains essential for RNA replication and translation. J. Virol.68, 4384–4391 (1994). CASPubMedPubMed Central Google Scholar
Rohll, J.B., Moon, D.H., Evans, D.J. & Almond, J.W. The 3′ untranslated region of picornavirus RNA: features required for efficient genome replication. J. Virol.69, 7835–7844 (1995). CASPubMedPubMed Central Google Scholar
Hu, W.Y., Myers, C.P., Kilzer, J.M., Pfaff, S.L. & Bushman, F.D. Inhibition of retroviral pathogenesis by RNA interference. Curr. Biol.12, 1301–1311 (2002). ArticleCASPubMed Google Scholar
Capodici, J., Kariko, K. & Weissman, D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J. Immunol.169, 5196–5201 (2002). ArticlePubMed Google Scholar
Surabhi, R.M. & Gaynor, R.B. RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type 1 replication. J. Virol.76, 12963–12973 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nishitsuji, H. et al. Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect.6, 76–85 (2004). ArticleCASPubMed Google Scholar
Joshi, P.J., North, T.W. & Prasad, V.R. Aptamers directed to HIV-1 reverse transcriptase display greater efficacy over small hairpin RNAs targeted to viral RNA in blocking HIV-1 replication. Mol. Ther.11, 677–686 (2005). ArticleCASPubMed Google Scholar
Westerhout, E.M., Ter Brake, O. & Berkhout, B. The virion-associated incoming HIV-1 RNA genome is not targeted by RNA interference. Retrovirology3, 57–65 (2006). ArticleCASPubMedPubMed Central Google Scholar
Albertini, A.A. et al. Crystal structure of the rabies virus nucleoprotein-RNA complex. Science313, 360–363 (2006). ArticleCASPubMed Google Scholar
Green, T.J., Zhang, X., Wertz, G.W. & Luo, M. Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science313, 357–360 (2006). ArticleCASPubMed Google Scholar
Fields, B.N., Raine, C.S. & Baum, S.G. Temperature-sensitive mutants of reovirus type 3: defects in viral maturation as studied by immunofluorescence and electron microscopy. Virol.43, 569–578 (1971). ArticleCAS Google Scholar
Kobayashi, T., Chappell, J.D., Danthi, P. & Dermody, T.S. Gene-specific inhibition of reovirus replication by RNA interference. J. Virol.80, 9053–9063 (2006). ArticleCASPubMedPubMed Central Google Scholar
Geiss, B.J., Pierson, T.C. & Diamond, M.S. Actively replicating West Nile virus is resistant to cytoplasmic delivery of siRNA. Virol. J.2, 53 (2005). ArticleCASPubMedPubMed Central Google Scholar
Schubert, S. et al. Strand-specific silencing of a picornavirus by RNA interference: evidence for the superiority of plus-strand specific siRNAs. Antiviral Res.73, 197–205 (2007). ArticleCASPubMed Google Scholar
Egger, D., Teterina, N., Ehrenfeld, E. & Bienz, K. Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J. Virol.74, 6570–6580 (2000). ArticleCASPubMedPubMed Central Google Scholar
Van Aerschot, A. Oligonucleotides as antivirals: dream or realistic perspective? Antiviral Res.71, 307–316 (2006). ArticleCASPubMed Google Scholar
Neuman, B.W. et al. Inhibition, escape, and attenuated growth of severe acute respiratory syndrome coronavirus treated with antisense morpholino oligomers. J. Virol.79, 9665–9676 (2005). ArticleCASPubMedPubMed Central Google Scholar
Matzen, K. et al. RNase H-mediated retrovirus destruction in vivo triggered by oligodeoxynucleotides. Nat. Biotechnol.25, 669–674 (2007). ArticleCASPubMed Google Scholar
Ter Brake, O. & Berkhout, B. A novel approach for inhibition of HIV-1 by RNA interference: counteracting viral escape with a second generation of siRNAs. J. RNAi Gene Silencing1, 56–65 (2005). CASPubMedPubMed Central Google Scholar
Vitravene Study Group. Safety of intravitreous fomivirsen for treatment of cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol.133, 484–498 (2002).
Vitravene Study Group. Randomized dose-comparison studies of intravitreous fomivirsen for treatment of cytomegalovirus retinitis that has reactivated or is persistently active despite other therapies in patients with AIDS. Am. J. Ophthalmol.133, 475–483 (2002).
Vitravene Study Group. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol.133, 467–474 (2002).
Amado, R.G. et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum. Gene Ther.15, 251–262 (2004). ArticleCASPubMed Google Scholar
Macpherson, J.L. et al. Long-term survival and concomitant gene expression of ribozyme-transduced CD4+ T-lymphocytes in HIV-infected patients. J. Gene Med.7, 552–564 (2005). ArticleCASPubMed Google Scholar
Levine, B.L. et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl. Acad. Sci. USA103, 17372–17377 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ranga, U. et al. Enhanced T cell engraftment after retroviral delivery of an antiviral gene in HIV-infected individuals. Proc. Natl. Acad. Sci. USA95, 1201–1206 (1998). ArticleCASPubMedPubMed Central Google Scholar
Woffendin, C., Ranga, U., Yang, Z., Xu, L. & Nabel, G.J. Expression of a protective gene-prolongs survival of T cells in human immunodeficiency virus-infected patients. Proc. Natl. Acad. Sci. USA93, 2889–2894 (1996). ArticleCASPubMedPubMed Central Google Scholar
Bahner, I. et al. Lentiviral vector transduction of a dominant-negative rev gene into human CD34(+) hematopoietic progenitor cells potently inhibits human immunodeficiency virus-1 replication. Mol. Ther.15, 76–85 (2007). ArticleCASPubMed Google Scholar
Kohn, D.B. et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood94, 368–371 (1999). CASPubMed Google Scholar
Anderson, J. et al. Safety and efficacy of a lentiviral vector containing three anti-HIV genes-CCR5 ribozyme, Tat-rev siRNA, and TAR Decoy-in SCID-hu mouse-derived T cells. Mol. Ther.15, 1182–1188 (2007). ArticleCASPubMed Google Scholar
Morgan, R.A. et al. Preferential survival of CD4+ T lymphocytes engineered with anti-human immunodeficiency virus (HIV) genes in HIV-infected individuals. Hum. Gene Ther.16, 1065–1074 (2005). ArticleCASPubMed Google Scholar
Hugle, T. & Cerny, A. Current therapy and new molecular approaches to antiviral treatment and prevention of hepatitis C. Rev. Med. Virol.13, 361–371 (2003). ArticleCASPubMed Google Scholar
McHutchison, J.G. et al. A phase I trial of an antisense inhibitor of hepatitis C virus (ISIS 14803), administered to chronic hepatitis C patients. J. Hepatol.44, 88–96 (2006). ArticleCASPubMed Google Scholar